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Introduction

• Existing first-order probabilistic languages 
attempt to model objects and relationships 
between them

• Such languages have difficulty in modeling 
unknown objects in a flexible way

• There are many interesting problems 
involving unknown objects



Example I

• An urn contains an unknown number of 
balls, which are equally likely to be blue or 
green

• Balls are drawn, observed (with 0.2 
observation error), and replaced

• How many balls are in the urn?  Was the 
same ball drawn twice?



Example II

• An unknown number of aircraft are being 
tracked on radar

• Each radar blip gives the approximate 
position of an aircraft, but some blips are 
false positives,  and some aircraft are not 
detected.

• What aircraft exist, and what are their 
trajectories?



BLOG

• A language for defining probability 
distributions over outcomes with varying 
sets of objects

• Syntax similar to First Order Logic

• Describes a stochastic model for generating 
worlds



BLOG: Example I

// Blog is typed
type Color; type Ball; type Draw;

// Random functions
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

// Initial constants
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;



BLOG: Example I
// Number of balls has a Poisson prior
#Ball ~ Poisson[6]();

// Both possible colors of a ball are equally likely
TrueColor(b) ~ TabularCPD[[0.5,0.5]];

// Balls are drawn with uniform probability from the urn
BallDrawn(d) ~ Uniform({Ball b});

// The observed color of a drawn ball is wrong with P=0.2
ObsColor(d)
    if( BallDrawn(d) != null ) then
        ~TabularCPD[[0.8,0.2][0.2,0.8]]
            (TrueColor(BallDrawn(d))



Syntax and Semantics

• In BLOG, everything is treaded as a  function: 
constants are just functions that return true

• Functions are typed (τ0, τ1...τk) where τ0 
is the return type and τ1...τk are the 
argument types



S&S: Types

• The type keyword introduces the various 
types for a given model

// Object types
type Aircraft; type Blip;

// Built-in types for strings, numbers, and tuples
type String; type R5Vector;



S&S: Random Functions

• The random keyword introduces a random 
function of the form τ0 f(τ1...τk) where “f” 
is the function name, τ1...τk are the 
argument types, and τ0 is the return type

// Random functions
random R6Vector State(Aircraft,NaturalNum);
random R3Vector ApparentPos(Blip);



S&S: Non-Random

• The nonrandom keyword introduces a 
function whose interpretation is fixed in all 
possible world. 

• Typing syntax is similar to random functions.

// Non-Random functions
nonrandom NaturalNum Pred(NaturalNum);



S&S: Dependencies

• Allows a level of flow control for functions

• Given example establishes an initial state 
and subsequent states as transitions from 
the preceding state

// Dependent function
State(a,t)
if t=0

then ~ InitState()
else ~ StateTransition(State(a,Pred(t)))



S&S: Generation

• Most powerful construct that specifies the 
generation of new objects

• A combination of Generator functions and 
Number functions

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source,Time) ⇒ (a,t) ~ Detection(State(a,t))



S&S: Generation

• #τ : (g1..gk) ⇒ (x1..xk) ~ DistFunc(x)

• g1..gk are functions who accept objects of 
type τ.

• An object of type τ is with P 
determined by DistFunc(x) when objects 
o1..ok for g1..gk

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source,Time) ⇒ (a,t) ~ Detection(State(a,t))



Inference

• For a given random variable (random 
function), we consider an instantiation σ 
over a set of RV vars(σ)

• P(σ) = ∏X∈vars(σ)   px(σx | σpa(X))’

• px is the CPD for X

• σpa is σ restricted to parents of X



Inference
• In a Bayes Net for a BLOG model, the 

parent set is often infinite in size



Inference
• Self-supporting instantiation

• While the parent set may be infinite, not 
all entries are needed to calculate the 
CPD

• If a given instantiation can be ordered 
such that Xn depends on only X1..Xn-1 
for all n ≤ N, then... self-supporting

• See [Milch et al. 2005b] for proof regarding 
self-supporting instantiations with countably 
infinite random variables*



Inference
• Is this even decidable?

• Yes, using rejection sampling

• Very slow, but decidable

• See termination criteria proof in the 
chapter

• Faster algorithm using likelihood weighting 
algorithm with backward chaining from the 
query and evidence nodes to avoid 
unneeded sampling



Inference

• Rejection Sampling

• Start with initially empty σ 

• Augment as function dependencies are 
met

• Continue until all query and evidence 
variables have been sampled

• If consistent, increment Nq

• P(Q=q|e) is Nq/N



Results

Balls in urn example:
10 balls drawn, all blue,

with uniform (a) and poisson (b) priors


