
BLOG:
Probabilistic
Models with

Unknown Objects
Milch et. al. 2005

574 Presentation - Brian Ferris

Overview

• Introduction

• Motivating Examples

• BLOG: Bayesian Logic

• Syntax and Semantics

• Inference

Introduction

• Existing first-order probabilistic languages
attempt to model objects and relationships
between them

• Such languages have difficulty in modeling
unknown objects in a flexible way

• There are many interesting problems
involving unknown objects

Example I

• An urn contains an unknown number of
balls, which are equally likely to be blue or
green

• Balls are drawn, observed (with 0.2
observation error), and replaced

• How many balls are in the urn? Was the
same ball drawn twice?

Example II

• An unknown number of aircraft are being
tracked on radar

• Each radar blip gives the approximate
position of an aircraft, but some blips are
false positives, and some aircraft are not
detected.

• What aircraft exist, and what are their
trajectories?

BLOG

• A language for defining probability
distributions over outcomes with varying
sets of objects

• Syntax similar to First Order Logic

• Describes a stochastic model for generating
worlds

BLOG: Example I

// Blog is typed
type Color; type Ball; type Draw;

// Random functions
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

// Initial constants
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

BLOG: Example I
// Number of balls has a Poisson prior
#Ball ~ Poisson[6]();

// Both possible colors of a ball are equally likely
TrueColor(b) ~ TabularCPD[[0.5,0.5]];

// Balls are drawn with uniform probability from the urn
BallDrawn(d) ~ Uniform({Ball b});

// The observed color of a drawn ball is wrong with P=0.2
ObsColor(d)
 if(BallDrawn(d) != null) then
 ~TabularCPD[[0.8,0.2][0.2,0.8]]
 (TrueColor(BallDrawn(d))

Syntax and Semantics

• In BLOG, everything is treaded as a function:
constants are just functions that return true

• Functions are typed (τ0, τ1...τk) where τ0
is the return type and τ1...τk are the
argument types

S&S: Types

• The type keyword introduces the various
types for a given model

// Object types
type Aircraft; type Blip;

// Built-in types for strings, numbers, and tuples
type String; type R5Vector;

S&S: Random Functions

• The random keyword introduces a random
function of the form τ0 f(τ1...τk) where “f”
is the function name, τ1...τk are the
argument types, and τ0 is the return type

// Random functions
random R6Vector State(Aircraft,NaturalNum);
random R3Vector ApparentPos(Blip);

S&S: Non-Random

• The nonrandom keyword introduces a
function whose interpretation is fixed in all
possible world.

• Typing syntax is similar to random functions.

// Non-Random functions
nonrandom NaturalNum Pred(NaturalNum);

S&S: Dependencies

• Allows a level of flow control for functions

• Given example establishes an initial state
and subsequent states as transitions from
the preceding state

// Dependent function
State(a,t)
if t=0

then ~ InitState()
else ~ StateTransition(State(a,Pred(t)))

S&S: Generation

• Most powerful construct that specifies the
generation of new objects

• A combination of Generator functions and
Number functions

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source,Time) ⇒ (a,t) ~ Detection(State(a,t))

S&S: Generation

• #τ : (g1..gk) ⇒ (x1..xk) ~ DistFunc(x)

• g1..gk are functions who accept objects of
type τ.

• An object of type τ is with P
determined by DistFunc(x) when objects
o1..ok for g1..gk

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source,Time) ⇒ (a,t) ~ Detection(State(a,t))

Inference

• For a given random variable (random
function), we consider an instantiation σ
over a set of RV vars(σ)

• P(σ) = ∏X∈vars(σ) px(σx | σpa(X))’

• px is the CPD for X

• σpa is σ restricted to parents of X

Inference
• In a Bayes Net for a BLOG model, the

parent set is often infinite in size

Inference
• Self-supporting instantiation

• While the parent set may be infinite, not
all entries are needed to calculate the
CPD

• If a given instantiation can be ordered
such that Xn depends on only X1..Xn-1
for all n ≤ N, then... self-supporting

• See [Milch et al. 2005b] for proof regarding
self-supporting instantiations with countably
infinite random variables*

Inference
• Is this even decidable?

• Yes, using rejection sampling

• Very slow, but decidable

• See termination criteria proof in the
chapter

• Faster algorithm using likelihood weighting
algorithm with backward chaining from the
query and evidence nodes to avoid
unneeded sampling

Inference

• Rejection Sampling

• Start with initially empty σ

• Augment as function dependencies are
met

• Continue until all query and evidence
variables have been sampled

• If consistent, increment Nq

• P(Q=q|e) is Nq/N

Results

Balls in urn example:
10 balls drawn, all blue,

with uniform (a) and poisson (b) priors

