BLOG: Probabilistic Models with Unknown Objects
Milch et. al. 2005

574 Presentation - Brian Ferris
Overview

- Introduction
- Motivating Examples
- BLOG: Bayesian Logic
- Syntax and Semantics
- Inference
Introduction

• Existing *first-order probabilistic languages* attempt to model objects and relationships between them

• Such languages have difficulty in modeling unknown objects in a flexible way

• There are many interesting problems involving unknown objects
Example I

- An urn contains an unknown number of balls, which are equally likely to be blue or green
- Balls are drawn, observed (with 0.2 observation error), and replaced
- How many balls are in the urn? Was the same ball drawn twice?
Example II

• An unknown number of aircraft are being tracked on radar

• Each radar blip gives the approximate position of an aircraft, but some blips are false positives, and some aircraft are not detected.

• What aircraft exist, and what are their trajectories?
• A language for defining probability distributions over outcomes with varying sets of objects

• Syntax similar to First Order Logic

• Describes a stochastic model for generating worlds
// Blog is typed
type Color; type Ball; type Draw;

// Random functions
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

// Initial constants
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;
// Number of balls has a Poisson prior
#Ball ~ Poisson[6]();

// Both possible colors of a ball are equally likely
TrueColor(b) ~ TabularCPD[[0.5,0.5]];

// Balls are drawn with uniform probability from the urn
BallDrawn(d) ~ Uniform({Ball b});

// The observed color of a drawn ball is wrong with P=0.2
ObsColor(d)
 if(BallDrawn(d) != null) then
 ~TabularCPD[[0.8,0.2][0.2,0.8]]
 (TrueColor(BallDrawn(d)))
Syntax and Semantics

- In BLOG, everything is treated as a *function*: constants are just functions that return true.
- Functions are typed \((\tau_0, \tau_1...\tau_k)\) where \(\tau_0\) is the return type and \(\tau_1...\tau_k\) are the argument types.
S&S: Types

// Object types
type Aircraft; type Blip;

// Built-in types for strings, numbers, and tuples
type String; type R5Vector;

• The type keyword introduces the various types for a given model
S&S: Random Functions

// Random functions
random R6Vector State(Aircraft,NaturalNum);
random R3Vector ApparentPos(Blip);

- The *random* keyword introduces a random function of the form \(\tau_0 \ f(\tau_1...\tau_k) \) where “f” is the function name, \(\tau_1...\tau_k \) are the argument types, and \(\tau_0 \) is the return type.
S&S: Non-Random

// Non-Random functions
nonrandom NaturalNum Pred(NaturalNum);

• The *nonrandom* keyword introduces a function whose interpretation is fixed in all possible world.

• Typing syntax is similar to random functions.
S&S: Dependencies

// Dependent function
State(a,t)
if t=0
 then ~ InitState()
else ~ StateTransition(State(a,Pred(t)))

- Allows a level of flow control for functions
- Given example establishes an initial state and subsequent states as transitions from the preceding state
S&S: Generation

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source, Time) ⇒ (a, t) ~ Detection(State(a, t))

- Most powerful construct that specifies the generation of new objects
- A combination of Generator functions and Number functions
S&S: Generation

// Generator functions
generating Aircraft Source(Blip)
generating NaturalNum Time(Blip)

#Aircraft ~ NumAircraftDistrib();
#Blip: (Source,Time) ⇒ (a,t) ~ Detection(State(a,t))

- #τ : (g1..gk) ⇒ (x1..xk) ~ DistFunc(x)
- g1..gk are functions who accept objects of type τ.
- An object of type τ is with P determined by DistFunc(x) when objects o1..ok for g1..gk
Inference

• For a given random variable (random function), we consider an instantiation σ over a set of RV $\text{vars}(\sigma)$

• $P(\sigma) = \prod_{X \in \text{vars}(\sigma)} p_X(\sigma_X | \sigma_{\text{pa}(X)})$

• p_X is the CPD for X

• σ_{pa} is σ restricted to parents of X
Inference

- In a Bayes Net for a BLOG model, the parent set is often infinite in size.
Inference

- **Self-supporting instantiation**

- While the parent set may be infinite, not all entries are needed to calculate the CPD

- If a given instantiation can be ordered such that X_n depends on only $X_1..X_{n-1}$ for all $n \leq N$, then... self-supporting

- See [Milch et al. 2005b] for proof regarding self-supporting instantiations with countably infinite random variables*
Inference

- Is this even decidable?
 - Yes, using rejection sampling
 - Very slow, but decidable
 - See termination criteria proof in the chapter
- Faster algorithm using likelihood weighting algorithm with backward chaining from the query and evidence nodes to avoid unneeded sampling
Inference

• **Rejection Sampling**

 • Start with initially empty \(\sigma \)

 • Augment as function dependencies are met

 • Continue until all query and evidence variables have been sampled

 • If consistent, increment \(N_q \)

 • \(P(Q=q|e) = \frac{N_q}{N} \)
Results

Balls in urn example:
10 balls drawn, all blue,
with uniform (a) and poisson (b) priors