
4

If we assume Brian Smith's Knowledge Representation Hypothesis
[Smith, Chapter 3], we can interpret the data structures in a Knowledge
Representation system as if they were declarative sentences. In this paper,
Levesque and Brachman argue that the proper role of such a system is to
perform a class of inferences determined by the truth conditions of these
sentences. Among other things, the system should be able to determine
when the truth of one sentence is implicit in another. However, depending
on the range of sentences that have to be dealt with, this task can be rela-
tively trivial or completely unsolvable. Thus, as the title suggests, there is a
tradeoff between the expressiveness and the tractability of a Knowledge
Representation scheme. The paper illustrates this point by looking at a
variety of formalisms (simple databases, logic programs, semantic net-
works, and frame systems) in terms of the range of first-order logic sen-
tences they can express and the kind of reasoning that they require. One
observation is that expressiveness often amounts to the ability to leave cer-
tain things unsaid, with full first-order logic at one extreme and databases
(and "analogues") at the other. The main conclusion of the survey, how-
ever, is that neither expressiveness nor tractability by itself determine the
value of a representation language (Allen's time representation [Chapter
30] is given as an example of a formalism that has quite consciously and
very effectively traded expressive power for computational advantage).
There is no single best language, it is argued, only more or less interesting
positions on the tradeoff. The paper encourages the design of Knowledge
Representation languages with this dimension in mind, contrary perhaps
to the views in [Hayes, Chapter 28] and [Moore, Chapter 18] regarding the
suitability of full first-order logic as the representation framework. It also
presents some surprising results about the complexity of computing a kind
of inference in simple frame representations.

Original version appeared as "A Fundamental Tradeoff in Knowledge Representation and
Reasoning" (by Hector]. Levesque), Proc. CSCSI-84, London, Ontario, 1984,141-152.

41

42 THE KNOWLEDGE REPRESENTATION ENTERPRISEI

A Fundamental Tradeoff in

Knowledge Representation and Reasoning

(Revised Versionl)

Hector J. Levesque

Ronald J. Brachman

May, 1985

Abstract

A fundamental computational limit on automated reasoning and its
effect on Knowledge Representation is examined. Basically, the prob-
lem is that it can be more difficult to reason correctly ;Nith one repre-
sentationallanguage than with another and, moreover, that this dif-
ficulty increases dramatically as the expressive power of the language
increases. This leads to a tradeoff between the expressiveness of a
representational language and its computational tractability. Here
we show that this tradeoff can be seen to underlie the differences
among a number of existing representational formalisms, in addition
to motivating many of the current research issues in Knowledge Rep-
resentation.

Introduction1

This paper examines from a general point of view a basic computational limit on au-

tomated reasoning, and the effect that it has on Knowledge Representation (KR). The

problem is essentially that it can be more difficult to reason correctly with one represen-

tational language than with another and, moreover, that this difficulty increases as the

expressive power of the language increases. There is a tradeoff between the expressiveness

of a representational language and its computational tractability. What we attempt to

lThis is a revised version of" A Funda.menta.l Tradeoff in Knowledge Representation and Reasoning," by
Hector J. Levesque, which appeared in the Proceedinga of the CSCSI/SCEIO Conference 1984, London
Ontario, May, 1984. It includes substantial portions of two other conference papers: "The Tractability of
Subsumption in Frame-Based Description Languages," by Ronald J. Brachman and Hector J. Levesque,
which appeared in Proceedinga of AAAI-84, Austin, Texas, August, 1984; and "What Makes a Knowledge
Base Knowledgeable? A View of Databases from the Knowledge Level," by the same authors, which ap-
peared in Proceedinga of the Firat International Workahop on Expert Databaae Syatema, Kiawah Ialand,
South Carolina. October. 1984.

show is that this tradeoff underlies the differences among a number of representational

formalisms (such as first-order logic, databases, semantic networks, frames) and motivates

many current research issues in KR (such as the role of analogues, syntactic encodings,

and defaults, as well as the systems of limited inference and hybrid reasoning) .

To deal with a such a broad range of representational phenomena, we must, ofnecessity,

take a considerably simplified and incomplete view of KR. In particular , we focus on its

computational and logical aspects, more or less ignoring its history and relevance in the

areas of psychology, linguistics, and philosophy. The area of KR is still very disconnected

today and the role of logic remains quite controversial, despite what this paper may suggest.

We do believe, however, that the tradeoff discussed here is fundamental. As long as we

are dealing with computational systems that reason automatically (without any special

intervention or advice) and correctly (once we define what that means), we will be able

to locate where they stand on the tradeoff: they will either be limited in what knowledge

they can represent or unlimited in the reasoning effort they might require.

Our computational focus will not lead us to investigate specific algorithms and data

structures for KR and reasoning, however. What we discuss is something much stronger ,

namely whether or not algorithms of a certain kind can exist at all. So the analysis here is

at the Knowledge Level [21] where we look at the content of what is represented (in terms

of what it says about the world) and not the symbolic structures used to represent that

knowledge. Indeed, we examine specific representation schemes in terms of what knowledge

they can represent, rather than in terms of how they might actually represent it.

ill the first section below, we discuss what a KR system is for and what it could mean

to reason correctly. Next, we investigate how a KR service might be realized using theorem

proving in first-order logic and the problem this raises. Following this, we present various

representational formalisms and examine the special kinds of reasoning they suggest. We

concentrate in particular on frame-based description languages, examining in some detail

a simple language and a variant. ill the case of this pair of languages, the kind of tradeoff

we are talking about is made concrete, with a dramatic result. Finally, we draw some

tentative general conclusions from this analysis.

2

While it is generally agreed that KR plays an important role in (what have come to be

called) knowledge-based systems, the exact nature of that role is often hard to define. h1

THE KNOWLEDGE REPRESENTATION ENTERPRISE44 I

some cases, the KR subsystem does no more than manage a collection of data structUIes,

providing, for example, suitable search facilities; in others, the KR subsystem is not really

distinguished from the rest of the system at all and does just about everything: make

decisions, prove theorems, solve problems, and so on. In this section, we discuss in very

general terms the role of a KR subsystem within a knowledge-based system.

The Knowledge Representation Hypothesis2.1

A good place to begin a discussion of KR as a whole is with what Brian Smith has

called in [28] the Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be comprised of structural

ingredients that (a) we as external observers naturally take to represent a

propositional account of the knowledge that the overall process exhibits, and (b)

independent of such external semantical attribution, playa formal but causal

and essential role in engendering the behaviour that manifests that knowledge.

This hypothesis seems to underly much of the research in KR. fu fact, we might think

of knowledge-based systems as those that satisfy the hypothesis by design. Also, in some

sense, it is only with respect to this hypothesis that KR research can be distinguished from

any number of other areas involving symbolic structures such as database management,

programming languages and data structures.

Granting this hypothesis, there are two major properties that the structures in a

knowledge-based system have to satisfy. First of all, it must be possible to interpret

them as propositions representing the overall knowledge of the system. Otherwise, the

representation would not necessarily be of knowledge at all, but of something quite dif-

ferent, like numbers or circuits. Implicit in this constraint is that the structures have to

be expressions in a language that has a truth theory. We should be able to point to one

of them and say what the world would have to be like for it to be true. The structures

themselves need not look like sentences-there are no syntactic requirements on them at

all, other than perhaps finiteness-but we have to be able to understand them that way.

A second requirement of the hypothesis is perhaps more obvious. The symbolic struc-

tures within a knowledge-based system must playa causal role in the behaviour of that

system, as opposed to, say, comments in a programming language. Moreover, the influence

they have on the behaviour of the system should agree with our understanding of them

as propositions representing knowledge. Not that the system has to be aware in any mys-

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 45

terious way of the interpretation of its structures and their connection to the world;2 but

for us to call it knowledge-based, we have to be able to understand its behaviour as if it

believed these propositions, just as we understand the behaviour of a numerical program

as if it appreciated the connection between bit patterns and abstract numerical quantities.

2.2 Knowledge Bases

To make the above discussion a bit less abstract, we can consider a very simple task and

consider what a system facing this task would have to be like for us to call it knowledge-

based. The amount of knowledge the system will be dealing with will, of course, be very

small.

Suppose we want a system in PROLOG that is able to print the colours of various items

One way to implement that system would be as follows:

printColour(snow) :- ! , write("It's white.") .

printColour(grass) :- ! , write("It's green.") .

printColour(sky) :- ! , write("It's yellow.").

printColour(X) :- write("Beats me.") .

A slightly different organization that leads to the same overall behaviour is

printColour(X) :

colour(X,Y),

printColour(X) :

! .write(18It's 18) .write(Y). write(".")

-write(18Beats me.") .

colour(snow,white) .

colour(grass.green)
colour(sky.yellow) .

The second program is characterized by explicit structures representing the (minimal)

knowledgeS the system has about colours and is the kind of system that we are calling

knowledge-based. m the first program, the association between the object (we understand

as) referring to grass and the one referring to its colour is implicit in the structure of the

~Indeed, part of what philosophers have called the formality condition is that computation at some level has
to be uninterpreted symbol manipulation.

3Notice that typical of how the term "knowledge" is used in AI, there is Do requirement of truth. A system
may be mistaken about the colour of the sky but still be knowledge-based. "Belief" would perhaps be a
more appropriate term, although we follow the standard AI usage in this paper.

THE KNOWLEDGE REPR,ESENTATION ENTERPRISE46

program. In the second, we have an explicit knowledge base (or KB) that we can understand

as propositions relating the items to their colours. Moreover, this interpretation is justified

in that these structures determine what the system does when asked to print the colour of

a particular item.

One thing to notice about the exanlple is that it is not the use of a certain programming

language or data-structuring facility that makes a system knowledge-based. The fact that

PROLOG happens to be understandable as a subset of first-order logic is largely irrelevant.

We could probably read the first program "declaratively" and get sentences representing

some kind of knowledge out of it; but these would be very strange ones dealing with writing

strings and printing colours, not with the colours of objects.

The Knowledge Representation Subsystem2.3

In terms of its overall goals, a knowledge-based system is not directly interested in

what specific structures might exist in its KB. Rather, it is concerned about what the

application domain is like, for example, what the colour of grass is. How that knowledge is

represented and made available to the overall system is a secondary concern and one that

we take to be the reponsibility of the KR subsystem. The role of a KR subsystem, then,

is to manage a KB for a knowledge-based system and present a picture of the world based

on what it has represented in the KB.

If, for simplicity, we restrict our attention to the yes-no questions about the world

that a system might be interested in, what is involved here is being able to determine

what the KB says regarding the truth of certain sentences. It is not whether the sentence

itself is present in the KB that counts, but whether its truth is implicit in the KB. Stated

differently, what a KR system has to be able to determine, given a sentence a, is the

answer to the following question'

Assuming the world is such that what is believed is true, is a also true

We will let the notation KB F a mean that a is implied (in this sense) by what is in the

KB
One thing to notice about this view of a KR system is that the service it provides to

a knowledge-based system depends only on the truth theory of the language of represen-

tation. Depending on the particular truth theory, determining if KB F a might require

not just simple retrieval capabilities, but also inference of some sort. This is not to say

that the only service to be performed by a KR subsystem is question-answering. If we

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 47

imagine the overall system existing over a period of time, then we will also want it to be

able to augment the KB as it acquires new information about the world.' In other words,

the responsibility of the KR system is to select appropriate symbolic structures to repre-

sent knowledge, and to select appropriate reasoning mechanisms both to answer questions

and to assimilate new information, in accordance with the truth theory of the underlying

representation language.

So OUI view of KR makes it depend only on the semantics of the representation language,

w1like other possible accounts that might have it defined in terms of a set of formal symbol

manipulation routines (e.g., a proof theory). This is in keeping with what we have called

elsewhere a functional view of KR (see [15] and [5]), where the service performed by a KR

system is defined separately from the teclmiques a system might use to realize that service.

3

To make a lot of the above more concrete, it is useful to look at an example of the kinds

of knowledge that might be available in a given domain and how it might be represented

in a KB. The language that will be used to represent knowledge is that of a standard

first-order logic (FOL) .

3.1 Using First-Order Logic

The first and most prevalent type of knowledge to consider representing is what might

be called simple facts about the world, such as

.J oe is married to Sue

.Bill has a brother with no children.

.Henry's friends are Bill's cousins.

These might be complicated in any number of ways, for example, by including time pa-

rameters and certainty factors.

Simple observations such as these do not exhaust what might be known about the

domain, however. We may also have knowledge about the terminology used in these ob-

servations, such as

.Itis this management of a KB over time that makes a KR subsystem much more than just the implemen-
tation of a static deductive calculus.

48 I THE KNOWLEDGE REPRESENTATION ENTERPRISE

.Ancestor is the transitive closure of parent

.Brother is sibling restricted to males

.Favourite-cousin is a special type of cousin,

These could be called definitions except for the fact that necessary and sufficient conditions

might not always be available (as in the last example above). In this sense, they are much

more like standard dictionary entries.

The above two example sets concentrate on what might be called declarative knowledge

about the world. We might also have to deal with procedural knowledge that focuses not

on the individuals and their interrelationships, but on advice for reasoning about these.

For example, we might know that

.To find the father of someone, it is better to search for a parent and then check if he

is male, than to check each male to see if he is a parent.

.To see if x is an ancestor of y, it is better to search up from y than down from x.

One way to think of this last type of knowledge is not necessarily as advice to a reasoner ,

but as declarative knowledge that deals implicitly with the combinatorics of the domain

as a whole.

This is how the above knowledge might be represented in FOL:

1. The first thing to do is to "translate" the simple facts into 8"
would lead to sentences like

ices of FOL. This

'v'x Friend(hemy, x) = Cousin(bill, x)

2. To deal with terminology in FOL, the easiest way is to "extensionalize" it, that is, to
pretend that it is a simple observation about the domain. For example, the brother
statement above would becomes

VxVyBrother(x,y) = (Sibling(x,y) " Male(y)).

~

3. Typically, the procedural advice would not be represented explicitly at all in an FOL

KB, but would show up in the form of (1) and (2) above. Another alternative would

be to use extra-logical annotations like the kind used in PROLOG or those described

in [19].

5This is a little misleading since it will make the brother sentence appear to be no different in kind from
the one about Henry's friends, though we surely do not want to say that Henry's friends are defined to be
Bill's cousins.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING 49

The end result of this process would be a first-order KB: a collection of sentences in

FOL representing what was known about the domain. A major advaJltage of FOL is that

given a yes-no question also expressed in this language, we can give a very precise definition

of KB F a (and thu~, under what conditions the question should be answered yes, no, or

unknown):

KB ~ a iff

also satisfies a.
every interpretation satisfying all of the sentences in the KB
A

There is, moreover, another property of FOL which helps solidify the role of KR. If we

assume that the KB is a finite set of sentences and let KB stand for their conjunction, it

can be shown that

KBl=a iff 1- (KB :) a)

In other words, the question as to whether or not the truth of a is implicit in the KB reduces

to whether or not a certain sentence is a theorem of FOL. Thus, the question-answering

operation becomes one of theorem proving in FOL

3.2 The Problem

The good news in reducing the KR service to theorem proving is that we now have a

very clear, very specific notion of what the KR system should do; the bad news is that

it is also clear that this service cannot be provided. The sad fact of the matter is that

deciding whether or not a sentence of FOL is a theorem (i.e., the decision problem) is

unsolvable. Moreover, even if we restrict the language practically to the point of triviality

by eliminating the quantifiers, the decision problem, though now solvable, does not appear

to be solvable in anywhere near reasonable time.7 It is important to realize that this is not

a property of particular algorithms that people have looked at but of the problem itself:

there cannot be an algorithm that does the theorem proving correctly in a reasonable

amount of time. This bodes poorly, to say the least, for a service that is supposed to be

only a part of a larger knowledge-based system.

One aspect of these intractability results that should be mentioned, however, is that

they deal with the worst case behavioUl' of algorithms. fu practice, a given theorem proving

6The assumption here is that the semantics of FOL specify in the usual way what an interpretation is and
under what conditions it will satisfy a sentence.

7 Technically, the problem is now co-NP-complete, meaning that it is strongly believed to be computationally

intractable.

THE KNOWLEDGE REPRESENTATION ENTERPRiSE50 I

algorithm may work quite well. In other words, it might be the case that for a wide range

of questions, the program behaves properly, even though it can be shown that there will

always be short questions whose answers will not be returned for a very long time, if at

all

How serious is the problem, then? To a large extent this depends on the kind of

question you would like to ask of a KR subsystem. The worst case prospect might be

perfectly tolerable if you are interested in a mathematical application and the kind of

question you ask is an open problem in mathematics. Provided progress is being made,

you might be quite willing to stop and redirect the theorem prover after a few months if it

seems to be thrashing. Never mind worst case behaviour; this might be the only case you

are interested in.

But imagine, on the other hand, a robot that needs to know about its external world

(such as whether or not it is raining outside or where its umbrella is) before it can act. If

this robot has to call a KR system utility as a subroutine, the worst case prospect is much

more serious. Bogging down on a logically difficult but low-level subgoal and being unable

to continue without human intervention is clearly an unreasonable form of behaviour for

something aspiring to intelligence.

Not that "on the average" the robot might not do alright. The trouble is that nobody

seems to be able to characterize what an "average" case might be like.8 As responsible

computer scientists, we should not be providing a general inferential service if all that we

can say about it is that by and large it will probably work satisfactorily. If the KR service

is going to be used as a utility and is not available for introspection or control, then it

had better be dependable both in terms of its correctness and the resources it consumes.

Unfortunately, this seems to rule out a service based on theorem proving (in full first-order

logic) .

3.3 Two Pseudo-solutions

There are at least two fairly obvious ways to minimize the intractability problem. The

first is to push the computational barrier as far back as possible. Research in Automatic

Theorem Proving has concentrated on teclmiques for avoiding redundancies and speeding

up certain operations in theorem provers. Significant progress has been achieved here,

allowing open questions in mathematics to be answered [30,311. Along similar lines, VLSI

8Thi8 seems to account more than anything for the fact that there are so few average case results regarding

decidability.

and parallel architectural support stands to improve the performance of theorem provers

at least as much as it would any search program.

The s~cond way to make theorem provers more usable is to relax our notion of correct-

ness. A very simple way of doing this is to make a theorem proving program always return

an answer after a certain amount of time.9 If it has been unable to prove either that a

sentence or its negation is implicit in the KB, it could assume that it was independent of

the KB and answer unknown (or maybe reassess the importance of the question and try

again). This form of error (i.e., one introduced by an incomplete theorem prover), is not

nearly as serious as returning a yes for a no, and is obviously preferrable to an answer that

never arrives. This is of course especially true if the program uses its resources wisely, in

conjunction with the first suggestion above.

However, from the point of view ofKR, both of these are only pseudo-solutions. Clearly,

the first one alone does not help us guarantee anything about an inferential service. The

second one, on the other hand, might allow us to guarantee an answer within certain time

bounds, but would make it very hard for us to specify what that answer would be. If

we think of the KR sevice as reasoning according to a certain logic, then the logic being

followed is immensely complicated (compared to that of FOL) when resource limitations

are present. Indeed, the whole notion of the KR system calculating what is implicit in

the KB (which was our original goal) would have to be replaced by some other notion

that went beyond the truth theory of the representation language to include the inferential

power of a particular theorem proving program. In a nutshell, we can guarantee getting

an answer, but not the one we wanted.

One final observation about this intractability is that it is not a problem that is due to

the formalization of knowledge in FOL. If we assume that the goal of our KR sevice is to

calculate what is implicit in the KB, then as long as the truth theory of our representation

language is upward-compatible with that of FOL, we will run into the same problem. ill

particular , using English (or any other natural or artificial language) as our representation

language does not avoid the problem as long as we can express in it at least what FOL

allows us to express.

gThe resource limitation here should obviously be a function of how important overall it might be to answer
the question.

THE KNOWLEDGE REPRESENTATION ENTERPRISE52

4

It appears that we have run into a serious difficulty in trying to develop a KR service

that calculates what is implicit in a KB and yet does so in a reasonable amount of time.

One option we have not yet considered, however, is to limit what can be in the KB so that

its implications are more manageable computationally. Indeed, as we will demonstrate in

this section, much of the research in KR can be construed as trading off expressiveness

in a representation language for a more tractable form of inference. Moreover, unlike the

restricted dialects of FOL analyzed in the logic and computer science literatures (e.g. ,

in terms of nestings of quantifiers), the languages considered here have at least proven

themselves quite useful in practice, however contrived they may appear on the surface.

Incomplete Knowledge4.1

To see where this tradeoff between expressiveness and tractability originates, we have

to look at the use of the expressive power of FOL in KR and how it differs from its use in

mathematics.

In the study of mathematical foundations, the main use of FOL is in the formalization of

infinite collections of entities. So, for example, we have first-order number and set theories

that use quantifiers to range over these classes, and conditionals to state what properties

these entities have. This is exactly how Frege intended his formalism to be used.

In KR, on the other hand, the domains being characterized are usually finite. The

power of FOL is used not so much to deal with infinities, but to deal with incomplete

knowledge [19,13]. Consider the kind of facts1O that might be represented using FOL:

-,Student (john).1

This sentence says that John is not a student without saying what he is.

2. Parent(sue,bill) V Parent(sue,george)

This sentence says that either Bill or George is a parent of Sue, but does
not specify which.

3. 3z Cousin(bill,z) " Male(z).

This sentence says that Bill has at least one male cousin but does not say

who that cousin is.

loThe use of FOL to capture terminology or laws is somewhat different. See [4] for details.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 53

4. 'v'x Friend(george,x) :) 3y Child(x,y)

This sentence says that all of George's friends have children without saying
who those friends or their children are or even if there are any.

The main feature of these examples is that FOL is not used to capture complex details

about the domain, but to avoid having to represent details that may not be known. The

expressive power of FOL determines not so much what can be said, but what can be left

unsaid.

For a system that has to be able to acquire knowledge in a piecemeal fashion, there may

be no alternative to using all of FOL. But if we can restrict the kind of the incompleteness

that has to be dealt with, we can also avoid having to use the full expressiveness of FOL.

This, in turn, might lead to a more manageable inference procedure.

The last pseudo-solution to the tractability problem, then, is to restrict the logical

form of the KB by controlling the incompleteness of the knowledge represented. This is

still a pseudo-solution, of course. Indeed, provably, there cannot be a real solution to the

problem. But this one has the distinct advantage of allowing us to calculate exactly the

picture of the world implied by the KB, precisely what a KR service was supposed to do.

In what follows, we will show how restricting the logical form of a KB can lead to very

specialized, tractable forms of inference.

4.2 Database Form

The most obvious type of restriction to the form of a KB is what might be called

database form. The idea is to restrict a KB so that it can only contain the kinds of

information that can be represented in a standard database. Consider, for example, a very

simple database that talks about university courses. It might contain a relation (or record

type or whatever) like

THE KNOWLEDGE REPRESENTATION ENTERPRISE54

If we had to charaterize in FOL the information that this relation contained, we could use

a collection of function-free atomic sentences likel1

Course(csc248)

Course(matlOO)

Enrollment(csc248,42)Dept(csc248,ComputerScience)

Dept(mat lOO,Mathematics)

fu other words, the tabular database format characterizes exactly the positive instances

of the various predicates. But more to the point, since our list of FOL sentences never

ends up with ones like

Dept(matlOO,mathematics) V Dept(matlOO,history),

the range of uncertainty that we are dealing with is quite limited.

There is, however, additional information contained in the database not captured in the

simple FOL translation. To see this, consider, for instance, how we might try to determine

the answer to the question,

How many courses are offered by the Computer Science Department?

The knowledge expressed by the above collection of FOL sentences is insufficient to answer

this question: nothing about our set of atomic sentences implies that Computer Science

has at least two courses (since csc373 and csc248 could be names of the same individual),

and nothing implies that it has at most two courses (since there could be courses other

than those mentioned in the list of sentences) .On the other hand, from a database point of

view, we could apparently successfully answer our question using our miniature database

by phrasing it something like

Count c m COURSE where c.Dept = ComputerScience;

this yields the defini tive answer, "2" .The crucial difference here, between failing to answer

the question at all and answering it definitively, is that we have actually asked two different

questions. The formal query addressed to the database must be understood as

11 This is not the only way to characterize this information. For example, we could treat the field names as

function symbols or use Id as an additional relation or function symbol. Also, for the sake of simplicity,
we are ignoring here integrity constraints (saying, for example, that each course has a unique enrolhnent),
which may contain quantificational and other logical operations, but typically are only used to verify the
consistency of the database, not to infer new facts. None of these decisions affect the conclusions we will
draw below.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING { 55

How many tuples in the COURSE relation have ComputerScience in their Dept

Jield?

This is a question not about the world being modelled at all, but about the data itself. In

other words, the database retrieval version of the question asks about the structures in the

database itself, and not about what these structures represent.12

To be able to reinterpret the database query as the intuitive question originally posed

about courses and departments (rather than as one about tuples and fields), we must

account for additional information taking us beyond the stored data itself. In particular,

we need FOL sentences of the form

Cj 1= cil for distinct constants Cj and Cj,

stating that each constant represents a unique individual. In addition, for each predicate,

we need a sentence similar in form to

matlOO],
'v'x[Course(x) :) x = csc248 v. ..V x

saying that the only instances of the predicate are the ones named explicitly.13 H we now

consider a KB consisting of all of the sentences in FOL we have listed so far , a KR system

could, in fact, conclude that there were exactly two Computer Science courses, just like

its Datab&se Management counterpart. We have included in the imagined KB all of the

information, both explicit and implicit, contained in the database.

One important property of a KB- in this final form is that it is much easier to use

than a general first-order KB. In particular, since the first part of the KB (the atomic

sentences) does not use negation, disjunction, or existential quantification, we know the

exact instances of every predicate of interest in the language. There is no incompleteness

in our knowledge at all. Because of this, inlerence reduces to calculation. To find out how

many courses there are, all we have to do is count how many appropriate tuples appear in

the COURSE relation. We do not, for instance, have to reason by cases or by contradiction,

as we would have to in the more general case. For example, if we also knew that either

csc148 or csc149 or both were Computer Science courses but that no Computer Science

course other than csc3'l3 had an odd identification number, we could still determine that

12The hallmark, it would appear , of conventional Database Management is that its practitioners take their
role to be providing users access to the data, rather than using the data to a.n8wer question8 about the
world. The difference between the two pOint8 of view is especially evident when the data is very incomplete

[141.

13This is one form of what has been called the clo8ed world a88tJmption [25].

56 I THE KNOWLEDGE REPRESENTATION ENTERPRISE

there were three courses, but not by simply counting. But a KB in database form does not

allow us to express this kind of uncertajnty and, because of this expressive limitation, the

KR service is much more tractable. Specifically, we can represent what is known about

the world using just these sets of tuples, exactly like a standard database system. From

this perspective, a database is a knowledge base whose limited form permits a very special

form of inference.

This limitation on the logical form of a KB has other interesting features. Essentially,

what it amounts to is making sure that there is very close structural correspondence

between the (explicit) KB and the domain of interest: for each entity in the domain,

there is a unique representational object that stands for it; for each relationship that it

participates in, there is a tuple in the KB that corresponds to it. In a very real sense, the

KB is an analogue of the domain of interest, not so different from other analogues such

as maps or physical models. The main advantange of having such an analogue is that

it can be used directly to answer questions about the domain. That is, the calculations

on the model itself can play the role of more general reasoning techniques much the way

arithmetic can replace reasoning with Peano's axioms. The disadvantage of an analogue,

however, should also be clear: within a certain descriptive language, it does not allow

anything to be left unsaid about the domain.l(In this sense, an analogue representation

can be viewed as a special case of a propositional one where the information it contains is

relatively complete.

Logic Program Form

The second restriction on the form of a KB we will consider is a generalization of

the previous one that is found in programs written in PROLOG, PLANNER, and related

languages. A KB in logic program form also has an explicit and an implicit part. The

explicit KB in a PROLOG program is a collection of first-order sentences (called Horn

sentences) of the form

'v'Xl ...X,,[Pl " ..."Pm :) Pm+l] where m ~ O and each Pi is atomic

In the case where m = O and the arguments to the predicates are all constants, the logic

1.The same is true for the standard analogues. One of the things a map does not allow you to say, for example,
is that a river passes through one of two widely separated towns, without specifying which. Similarly, a
plastic model of a ship cannot tell us that the ship it represents does not have two smokestacks, without
also telling us how many it does have. This is not to say that there is no uncertainty associated with an
analogue, but that this uncertainty is due to the coarseness of the analogue (e.g. how carefully the map is
drawn) rather than to its content.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 57

program form coincides with the database form. Otherwise, because of the possible nesting

of functions, the set of relevant te.rms (whose technical name is the Herbrand universe) is

much larger and may be infinite.

As in the database case, if we were only interested in the universe of terms, the explicit

KB would be sufficient. However, to understand the KB as being about the world, but in a

way that is compatible with the answers provided by a PROLOGc processor, we again have

to include additional facts in an implicit KB. In this case, the implicit KB is normally

infinite since it must contain a set of sentences of the form (8 ~ t), for any two distinct

terms in the Herbrand universe. As in the database case, it must also contain a version of

the closed world assumption which is now a set containing the negation of every ground

atomic sentence not implied by the Horn sentences in the explicit KB.

The net result of these restrictions is a KB that once again has complete knowledge

of the world (within a given language), but this time, may require inference to answer

questions.15 The reasoning in this case, is the execution of the logic program. For example,

given an explicit PROLOG KB consisting of

parent(bill.mary).
parent (bill. sam) .

mother(X.Y) :- parent(X.Y). female(Y)

female (mary) .

we know exactly who the mother of Bill is, but only after having executed the program.

In one sense, the logic program form does not provide any computational advantage to a

reasoning system since determining what is in the implicit KB is, in general, undecidable.16

On the other hand, the form is much more manageable th"an in the general case since the

necessary inference can be split very nicely into two components: a retrieval component

that extracts (atomic) facts from a database by pattern-matcbing and a search component

that tries to use the non-atomic Horn sentences to complete the inference. In actual systems

like PROLOG and PLANNER, moreover, the search component is partially under user

control, giving him the ability to incorporate some of the kinds of procedural knowledge

(or combinatoric advice) referred to earlier. The only purely automatic inference is the

retrieval component.

15Notice that it is impossible to state in a KB of this form that (p v q) is true without stating which, or

that jxP(x) is true without saying what that x is. However, see the comments below regarding the use of

encodings.

16In other words, determining if a ground atomic sentence is implied by a collection of Horn sentences

(containing function symbols) is undecidable.

THE KNOWLEDGE REPRESENTATION ENTERPRISE58

This suggests a different way of looking at the inferential service provided by a KR

system (without even taking into account the logical form of the KB). Instead of auto-

matically performing the full deduction necessary to answer questions, a KR system could

manage a limited form of inference and leave to the rest of the knowledge-based system

(or to the user) the responsibility of intelligently completing the inference. As suggested

in [10], the idea is to take the "muscle" out of the automatic component and leave the

difficult part of reasoning as a problem that the overall system can (meta-)reason about

and plan to solve [11].

While this is certainly a promising approach, especially for a KB of a fully general

logical form, it does have its problems. First of all, it is far from clear what primitives

should be available to a program to extend the reasoning performed by the KR subsystem.

It is not as if it were a simple matter to generalize the meager PROLOG control facilities

to handle a general theorem prover, for example.l1 The search space in this case seems to

be much more complex.

Moreover, it is not clear what the KR service itself should be. If all a KR utility does is

perform explicit retrieval over sentences in a KB, it would not be much help. For example,

if asked about (p V q), it would fail if it only had (q V p) in the KB. What we really need

is an automatic inferential service that lies somewhere between simple retrieval and full

logical inference. But finding such a service that can be motivated semantically (the way

logical deduction is) and defined independently of how any program actually operates is

a non-trivial matter, though one we have taken some steps towards this in [16} (and see

Semantic N etwork Form

Turning now to semantic networks, a first observation about a KB in this form is that

it only contains unary and binary predicates. For example, instead of representing the fact

that John's grade in cslOO was 85 by

Grade (john, cslOO, 85),

we would postulate the existence of objects called "grade-assignments" and represent the

fact about John in terms of a particular grade-assignment g-al as

Grade-assignment(g-al) " Student(g-al,john) "

Course(g-al,cslOO) " Mark(g-al,85).

l1Though see [29] for some idea.s in this direction

This part of a KB in semantic net form is also in database form: a collection of function-

free groWld atoms, sentences stating the Wliqueness of constants and the closed world

assumption.

The main featille of a semantic net (and of the frame form below) , however, is not

how individuals are handled, but the treatment of the unary predicates (which we will call

types) and binary ones (which we will call attributes). First of all, the types are organized

into a taxonomy, which, for our purposes, can be represented by a set of sentences of the

form18

'v'x[B(x) :> A(x)]

The second kind of sentence in the generic KB places a constraint on an attribute as it

applies to instances of a type:

'v'x[B(x) ::> 3y(R(x,y) " V(y))] 'v'x[B(x) J R(x, C)].19or

This completes the semantic net form.

One property of a KB in this form is that it can be represented by a labelled directed

graph (and displayed in the usual way). The nodes are either constants or types, and the

edges are either labelled with an attribute or with the special label is-a.20 The significance

of this graphical representation is that it allows certain kinds of inference to be performed

by simple graph-searching techniques. For example, to find out if a particular individual has

a certain attribute, it is sufficient to search from the constant representing that individual,

up is-a links, for a node having an edge labelled with the attribute. By placing the

attribute as high as possible in the taxonomy, all individuals below it can inherit the

property. Computationally, any mechanism that speeds up this type of graph-searching

can be used directly to improve the performance of inference in a KB of this form.

m addition, the graph representation suggests different kinds of inference that are

based more directly on the structure of the KB than on its logical content. For example,

we can ask how two nodes are related and answer by finding a path in the graph between

them. Given for instance, Clyde the elephant and Jimmy Carter, we could end up with an

18See [2] for a discussion of some of the subtleties involved here.

19There are other forms possible for this constraint. For example, we might want to say that every R rather
than 6ome R is a V. See also [121. For the variant we have here, however, note that the KB is no longer in
logic program form.

2°Note that the interpretation of an edge depends on whether its source and target are constants or types.
For example, from a constant c to a type B, is-a says B(c), but from a type B to a type A, it is a taxonomic
sentence (again, see [2]).

60 I THE KNOWLEDGE REPRESENTATION ENTERPRISE

answer saying that Clyde is an elephant and that the favourite food of elephants is peanuts

which is also the major product of the farm owned by Jimmy Carter. A typical method of

producing this answer would be to perform a "spreading activation" search beginning at

the nodes for Clyde and Jimmy. Obviously, this form of question would be very difficult

to answer for a KB that was not in semantic net form.21

For better or worse, the appeal of the graphical nature of semantic nets has lead to forms

of reasoning (such as default reasoning [241) that do not fall into standard logical categories

and are not yet very well understood [91.22 This is a case of a representational notation

taking on a life of its own and motivating a completely different style of use not necessarily

grounded in a truth theory. It is unfortunately much easier to develop algorithms that

appear to reason over structures of a certain kind than to justify its reasoning by explaining

what the structures are saying about the world.

This is not to say that defaults are not a crucial part of our knowledge about the world.

fudeed, the ability to abandon a troublesome or unsuccessful line of reasoning in favour

of a default answer seems intuitively to be a fundamental way of coping with incomplete

knowledge in the presence of resource limitations. The problem is to make this intuition

precise. Paradoxically, the best formal accounts we have of defaults (such as [26]) would

claim that reasoning with them is even more difficult than reasoning without them, so

research remains to be done.

One final observation concerns the elimination of higher arity predicates in semantic

networks. It seems to be fairly commonplace to try to sidestep a certain generality of logical

form by introducing special representational objects into the domain. In the example

above, a special "grade-assignment" object took the place of a 3-place predicate. Another

example is the use of encodings of sentences as a way of providing (what appears to

be) a completely extensional version of modal logic [181.23 Not that exactly the same

expressiveness is preserved in these casesj but what is preserved is still fairly mysterious

and deserves serious investigation, especially given its potential impact on the tractability

of inference.

21 Quillian [231 proposed a "semantic intersection" approach to answering questions in his original work on

semantic nets. See also [7] for followup work on the same topic.
22 A simple example of a default would be to make elephant have the colour grey but to allow anything below

elepbant (such as a.Ibino-elepba.nt) to be linked to a different colour value. To determine the colour of an
individual would involve searching up for a value and stopping when the first one is found, allowing it to
preempt any higher ones. See also [31.

23Indeed, some modern semantic network formalisms (such as [27]) actually include all of FOL by encoding
sentences as terms.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 61

4.5 Frame Description Form

The final form we will consider, the frame description form, is mainly an elaboration

of the semantic network one. The emphasis, in this case, is on the structure of types

themselves (usually called frames), particularly in terms of their attributes (called slots).

Typically, the kind of detail involved with the specification of attributes includes

1 values, stating exactly what the attribute of an instance should be. Alternatively, the

value may be just a default, in which case an individual inherits the value provided

he does not override it.

2. restrictions, stating what constraints must be satisfied by attribute values. These can
be value restrictions, specified by a type that attribute values should be instances of,
or number restrictions, specified in terms of a minimum and a maximum number of
attribute values.

3,. attached procedures, providing procedural advice on how the attribute should be
used, An i/-needed procedure says how to calculate attribute values if none have
been specified; an i/-added procedure says what should be done when a new value is
discovered.

Like semantic networks, frame languages tend to take liberties with logical form and the

developers of these languages have been notoriously lax in characterizing their truth theo-

ries [12,31. What we can do, however, is restrict ourselves to a non-controversial subset of

a frame language that supports descriptions of the following form:

(Student
with a dept is computer-science and

with ~ 3 enrolled-course is a

(Graduate- Course

with a dept is a Engineering-Department))

This is intended to be a structured type that describes Computer Science students taking

at least three graduate courses in departments within Engineering. If this type had a name

(say A), we could express the type in FOL by a "meaning postulate" of the form

'v'xA(x) = [Student(x) I\ dept(x, computer-science) I\

3ylY2Y3 (Yl # Y2 I\ Yl # Y3 I\ Y2 # Y3 I\

enrolled-course(x, Yl) I\ Graduate-Course(yl) I\

3z(dept(yl, Z) I\ Engineering-Department(z))

enrolled-course(x,y2) I\ Graduate-Course(y2) I\

3z(dept(y2, z) I\ Engineering-Department(z))

enrolled-course(x, Y3) I\ Graduate-Course(y3) I\

3z(dept(y3, z) I\ Engineering-Department(z)))I.

/\

A

62 THE KNOWLEDGE REPRESENTATION ENTERPRISE

Similarly, it should be clear how to state equally clumsily2. in FOL that an individual is

an instance of this type.

One interesting property of these structured types is that we do not have to state

explicitly when one of them is below another in the taxonomy. The descriptions themselves

implicitly defule a taxonomy ofsubsumption, where type A subsumes type B if, by virtue

of the form of A and B, every instance of B must be an instance of A. For example,

without any world knowledge, we can determine that the type Person subsumes

(Person with every male friend is a Doctor)

which in turn subsumes

(Person with every friend is a
(Doctor with a specialty is surgery)).

Similarly,

(Person with ~ 2 children) subsumes

(Person with ~ 3 male children).

Also, we might say that two types are disjoint if no instance of one can be an instance of

the other. An example of disjoint types is

and(Person with ~ 3 young children)

(Person with ~ 2 children).

Analytic relationships like subsumption and disjointness are properties of structured types

that are not available in a semantic net where all of the types are atomic.

There are very good reasons to be interested in these analytic relationships [4]. ill

KRYPTON [5,61, a full first-order KB is used to represent facts about the world, but sub-

sumption and disjointness information is also available without having to add to the KB a

collection of meaning postulates representing the structure of the types. The reason this

is significant is that while subsumption and disjointness can be defined in terms of logical

implication,25 there are good special-purpose algorithms for calculating these relationships

in some frame description languages. Again, because the logical form is sufficiently con-

strained, the required inference can be much more tractable.

24 What mares these sentences especially awkward in FOL is the number restrictions. For example, the

sentence "There are a hundred billion stars in the Milky Way G&laxy" would be translated in.t..o an FOL
sentence with on the order of 1022 conjuncts.

25 Specifically, type A subsumes type B iff the meaning postulates for A and B logically imply Vx[B(x) :) A(x) j.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 63

An Example of the Tradeoff

As it tUnIS out, frame description lang11ages and the subsumption inference provide a

rich domain for studying the tradeoff between expressiveness and tractability. To see this,

we will look in some detail at a simple frame description language called J.C whose types

and attributes are defined by the following grammar:

(attribute) ::= (atom)

I (RESTR (attribute) (type))

The. 1£ language is intended as a simplified (though less readable) version of the frame-

based language used in the previous section. So, for example, where we would previously

have written a description like

(person with every male friend is a (doctor with a specialty)),

the equivalent 1£ type is now written as

(AND person (ALL (RESTR friend male) (AND doctor (SOME specialty)))).

To state exactly what these c.oIistructs mean, we now briefly define a straightforward

extensional semantics for 1£ (which also provides us with a precise definition of subsump-

tion). This will be done as follows: imagine that associated with each description is the set

of individuals (individuals for types, pairs of individuals for attributes) that it describes.

Call that set the extension of the description. Notice that by virtue of the structure of

descriptions, their extensions are not independent (for example, the extension of (AND tl

t2) should be the intersection of those of tl and t2). In general, the structures of two

descriptions can imply that the extension of one is always a superset of the extension of

the other. In that case, we will say that the first subsumes the second (so, in the case just

mentioned, tl would be said to subsume (AND tl t2)).

More formally, let D be any set and c: be any function from types to subsets of D and

attributes to subsets of the Cartesian product, D X D. So

c: [t] ~ D for any type t, and

c: [a] ~ D x D for any attribute a.

We will say that c: is an extension function over D if and only if

THE KNOWLEDGE REPRESENTATION ENTERPRISE64 I

f.[(AND tl tn)] ni E: [til1

(x,y) E £[alE:[(ALL a t)] = { x E D I if then2

(x,y) E E:[a] and y E E:{t]f.[(RESTR a t)] = {x,y) E D x D4

Finally, for any two types ti and t2, we can say that ti is subsumed by t2 if and only if for

any set D and any extension function" over D, " [ti] <; " [t2]. That is, one type is subsumed

by a second type when all instances of the first-in all extensions-are also instances of

the second. From a semantic point of view, subsumption dictates a kind of necessary set

inclusion,

Given a precise definition of subsumption, we can now consider algorithms for calculat-

ing subsumption between descriptions. Intuitively, this seems to present no real problems.

To determine if .9 subsumes t, what we have to do is make sure that each component of .9 is

"implied" by some component (or components) of t. Moreover, the type of "implication"

we need should be fairly simple since 1£ has neither a negation nor a disjunction operator .

Unfortunately, such intuitions can be nastily out of line. In particular, let us consider a

slight variant of 1£ -call it 1£ -.1£ -includes all of 1£ except for the RESTR operator. On

the surface, the difference between 1£- and 1£ seems expressively minor. But it turns out

that it is computationally very significant. In particular, there is an O(n2) algorithm for

determining subsumption in 1£ -, but the same problem for 1£ is intractable. In the rest of

this section, we sketch the form of our algorithm for 1£ -and the proof that subsumption for

1£ is as hard as testing for propositional tautologies, and therefore most likely unsolvable
in polynomial time 26

We here simply present, without comment, an algorithm for computing subsumption

for 1£-:

SUBS?[s,t]Subsumption Algorithm for 1.C-

1. Flatten both 8 and t by removing all nested AND operators. So, for example,

(AND x y z w)(AND x (AND y z) w) becomes

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING f 65

(AND (ALL a (AND u v w)) x (ALL a (AND y z)))

(AND x (ALL a (AND u v w y z))).

becomes

Assuming s is now (AND s 1

each Si ,

Sn} and t is (AND ti3 tm), then return true iff for

This algorithm can be shown to compute subsumption correctly. For the purposes of this

paper, the main property of SUBS? that we are interested in is that it can be shown to

calculate subsumption for 1£- in O(n2) time.

We now turn our attention to the subsumption problem for full 1£. The proof that

subsumption of descriptions in 1£ is intractable is based on a correspondence between this

problem and the problem of deciding whether a sentence of propositional logic is implied

by another. Specifically, we define a mapping 11" from propositional sentences in conjunctive

normal form to descriptions in 1£ that has the property that for any two sentences a and

.8, a logically implies .8 iff 11"[a] is subsumed by 11"[.8].

Suppose PI, P2, ..., Pm are propositional letters distinct from A, B

R, and S.

7r[PI V P2 V. ..V Pn V -'Pn+1 V -'Pn+2 V. ..V -'Pm]

(AND (ALL (RESTR R PI) A)

(ALL (RESTR R Pn) A)

(SOME (RESTR R Pn+l))

(SOME (RESTR R Pm)))

Assume that al, a2, ..., ak are disjunctions of literals not using A,
B, R, and S.

11"[al " a2 " ..." akl =

(AND (ALL (RESTR S (SOME (RESTR R A))) B)

(ALL (RESTR S 1I"[all) B)

(ALL (RESTR S 1I"[ak]) B))

THE KNOWLEDGE REPRESENTATION ENTERPRISE66 I

What this mapping provides is a way of answering questions of implication by first

mapping the two sentences into descriptions in 1£ and then seeing if one is subsumed

by the other. Moreover, because 1T can be calculated efficiently, any good algorithm for

subsumption becomes a good one for implication.

The key observation here, however, is that there can be no good algorithm for impli-

cation. To see this, note that a sentence implies (p 1\ -'P) just in case it is not satisfiable.

But determining the satisfiablity of a sentence in this form is NP-complete [81. Therefore,

a special case of the implication problem (where the second argument is (p 1\ -'P)) is the

complement of an NP-complete one. The correspondence between implication and sub-

sumption, then, leads to the observation that subsumption for 1£ is co-NP hard. In other

words, since a good algorithm for subsumption would lead to a good one for implication,

subsumption over descriptions in 1£ is intractable.27

5 Conclusions and Morals

fu this final section, we step back from the details of the specific representational

formalisms we have examined and attempt to draw a few conclusions.

An important observation about these formalisms is that we cannot really say that

one is better than any other; they simply take different positions on the tradeoff between

expressiveness and tractability. For example, f~ll FOL is both more expressive and less

appealing computationally than a language in semantic net form. Nor is it reasonable to

say that expressiveness is the primary issue and that the other is "merely" one of efficiency.

In fact, we are not really talking about efficiency here at all; that, presumably, is an issue of

algorithm and data structure, concerns of the Symbol Level [21]. The tractability concern

we have here Is much deeper and involves whether or not it makes sense to even think of

the language as computationally based.

From the point of view of those doing research in KR, this has a very important

consequence: we should continue to design and examine representation languages, even

when these languages can be viewed as special cases of FOL. What really counts is that

these special cases be interesting both from the point of view of what they can represent,

and from the point of view of the reasoning strategies they permit. All of the formalisms

we have examined above satisfy these two requirements. To dismiss a language as just a

21 As mentioned in section 3.2, the co-NP-complete problems are strongly believed to be unsolvable in poly-

nomial time.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 67

subset ofFOL is probably as misleading as dismissing the notion of a context-free grammar

as just a special case of a context-sensitive one.

What truth in advertising does require, however, is that these special cases of FOL

be identified as such. Apart from allowing a systematic comparison of representation

languages (as positions on the tradeoff), this might also encourage us to consider systems

that use more than one sublanguage and reasoning mechanism (as suggested for equality

in [2°1). The KRYPTON language [5,61, for example, includes all of FOL and a frame

description language. To do the necessary reasoning, the system contains both a theorem

prover and a description subsumption mechanism, even though the former could do the

job of the latter (but much less efficiently) .The trick with these hybrid systems is to factor

the reasoning task so that the specialists are able to cooperate and apply their optimized

algorithms without interfering with each other .

These considerations for designers of representation languages apply in a similar way

to those interested in populating a KB with a theory of some sort. A good first step

might be to write down a set of first-order sentences characterizing the domain, but it is

somewhat naive to stop there and claim that the account could be made computational

after the fact by the inclusion of a theorem prover and a. few well chosen heuristics. What

is really needed is the (much more difficult) analysis of the logical form of the theory,

keeping the tradeoff clearly in mind. An excellent example of this is the representation of

time described in [11. Allen is very careful to point out what kind of information about

time cannot be represented in his system, as well as the computational advantage he gains

from this limitation.

For the future, we still have a lot to learn about the tradeoff. It would be very helpful

to accumulate a wide variety of data points involving tractable and intractable languages.

Especially significant are crossover points where small changes in a language change its

computational character completely (an instance of which was illustrated in section 4.6).

Moreover, we need to know more about what people find easy or hard to handle. There is no

doubt that people can reason when necessary with radically incomplete knowledge (such as

that expressible in full FOL) but apparently only by going into a special problem-solving

or logic puzzle mode. In normal common sense situations, when reading a geography

book, for instance, the ability to handle disjunctions (say) seems to be quite limited. The

question is what forms of incomplete knowledge can be handled readily, given that the

geography book is not likely to contain any procedural advice on how to reason.

In summary, we feel that there are many interesting issues to pursue involving the

THE KNOWLEDGE REPRESENTATION ENTERPRISE68 I

tradeoff between expressiveness and tractability. Although there has always been a temp-

tation in KR to set the sights either too low (and provide only a data structuring facility

with little or no inference) or too high (and provide a full theorem proving facility), this

paper argues for the rich world of representation that lies between these two extremes.

Acknowledgements

Many of the ideas presented here originally arose in the context of the KRYPTON

project. We are deeply indebted to the Fairchild AI Lab (now the AI Lab of Schlum-

berger Computer Aided Systems Research) for making this research possible and to

Richard Fikes, Peter Patel-Schneider, and Victoria Gilbert. We would especially like

to thank Peter, and also Jim des Rivieres for providing very helpful comments on a

earlier draft of this paper, and S. J. Hurtubise for not.

[1] Allen, J., "Maintaining Knowledge about Temporal Intervals," Communications of
the ACM, Vol. 26, No.11, November, 1983, 832-843.

[2] Brachman, R. J., "What IS-A Is and Isn't: An Analysis of Taxonomic Links in
Semantic Networks," IEEE Computer, Vol. 16, No.10, October, 1983,30-36.

" 'I Lied about the Trees,' " AI Magazine, Vol. 6, No.3, Fall, 1985[3] Brachman, R. J .,

[4] Brachman, R. J., and Levesque, H. J., "Competence in Knowledge Representation,'
Proc. A A A 1-82, Pittsburgh, PA, 1982, 189-192.

[5] Brachman, R. J ., Fikes, R. E., and Levesque, H. J ., "Krypton: A Functional Approach
to Knowledge Representation," IEEE Computer, Vol. 16, No.10, October, 1983,67-
73.

[61 Brachman, R. J ., Gilbert, V. P., and Levesque, H. J ., " An Essential Hybrid Reasoning

System: Knowledge and Symbol Level Accounts of KRYPTON," Proc. IJCAI-85, Los

Angeles, CA, August, 1985.

[71 Collins, A. M., and Loftus, E. F ., " A Spreading-activation Theory of Semantic Pro-

cessing," Psychological Review, Vol. 82, No.6, 1975, 407-428.

[8] Cook, s. A., "The Complexity of Theorem-Proving Procedures," Proc. Srd Ann.
ACM Symposium on Theory 01 Computing. New York: Association for Computing
Machinery, 1971, pp. 151-158.

[9] Etherington, D., and Reiter, R., "On Inheritance Hierarchies with Exceptions," Proc.
AAAI-89, Washington, DC, August, 1983, 104-108.

A FUNDAMENTAL TRADEOFF IN KNOWLEDGE REPRESENTATION AND REASONING I 69

[10] Frisch, A., and Allen, J ., Knowledge Representation and Retrieval for Natural Lan-
guage Processing, TR 104, Computer Science Dept., Univ. of Rochester, 1982.

[11] Genesereth, M. R., " An Overview of Meta-Level Architecture,"

Washington, DC, August, 1983, 119-123.

Proc AAAI-89,

[12] Hayes, P. J ., "The Logic of Frames," in Frame Conceptions and Text Understanding1
D. Metzing (ed.). Berlin: Walter de Groyter and Co., 1979,46-61.

[131 Levesque, H. J., A Formal Treatment of Incomplete Knowledge Bases, Technical Re-
port No.3, Fairchild Laboratory for Artificial Intelligence Research, Palo Alto, CA,
1982.

[14] Levesque, H. J., "The Logic of Incomplete Knowledge Bases," in On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases, and Programming
Languages, M. L. Brodie, J. Mylopoulos, and J. Schmidt (eds.). New York: Springer-
Verlag, 1984, 165-186.

[15] Levesque, H. J., "Foundations of a Functional Approach to Knowledge Representa-
tion," A rtificial Intelligence, Vol. 23, No.2, July, 1984, 155-212.

[161 Levesque, H. J., "A Logic of Implicit and Explicit Belief," Proc. AAAI-84, Austin,
TX, August, 1984, 198-202.

[17] Levesque, H. J ., and Brachman, R. J ., "Some Results on the Complexity or Sub-
sumption in Frame-Based Description Languages," in preparation.

[18] Moore, R. C., Reasoning about Knowledge and Action, Technical Note 191, SRI In-
ternational, Menlo Park, CA, 1980.

[191 Moore, R. C., "The Role of Logic in Knowledge Representation and Commonsense
Reasoning," Proc. AAAI-82, Pittsburgh, PA, August, 1982, 428-433.

[2°1 Nelson, G., and Oppen, D. C., "Simplification by Cooperating Decision Procedures,"
ACM Transactions on Programming Languages and Systems, Vol. 1, No.2, 1979,
245-257.

[21] Newell, A.,

1-20.

"The Knowledge Level," The AI Magazine, Vol. 2, No.2, Summer, 1981,

[221 Patel-Sclmeider, P. F ., " A Decidable First-Order Logic for Knowledge Representa-

tion," Proc. IJCAI-85, Los Angeles, CA, August, 1985.

[231 Quillian, M. R., "Semantic Memory," in Semantic Inlormation Processing, M. Minsky
(ed.). Cambridge, MA: MIT Press, 1968, 227-270.

[24] Reiter, R., "On Reasoning by Default," Proc. TINLAP-.e, University of rninois at
Urbana-Champaign, 1978, 210-218.

THE KNOWLEDGE REPRESENTATION ENTERPRISE70 I

Reiter, R., "On Closed World Data Bases," in Logic and Data Bases, H. Gallaire and

J. Minker (eds.}. New York: Plenum Press, 1978,55-76.

Reiter, R., " A Logic for Default Reasoning," Artificial Intelligence, Vol. 13, Nos. 1,2

April, 1980, 81-132.

[27] Shapiro, S. C., "The SNePS Semantic Network Processing System," in Associative
Networks: Representation and Use of Knowledge by Computers, N. v. Findler (ed.).

New York: Academic Press, 1979,179-203.

[28] Smith, B. C., Reflection and Semantics in a Procedural Language, Ph.D. Thesis and
Tech. Report MIT/LCS/TR-272, MIT, Cambridge, MA, 1982.

[29] Stickel, M. E., "A Prolog Teclmology Theorem Prover," Proc. of the 1984 Symposium

on Logical Programming, Atlantic City, 1984,211-217.

[30] Winker, S., "Generation and Verification of Finite Models and Counterexamples using
an Automated Theorem Prover Answering Two Open Questions," Journal 0! the

ACM, Vol. 29, No.2, April, 1982, 273-284.

[31] Wos, L., Winker, S., Smith, B., Veroff, R., and Henschen, L., "A New Use of an
Automated Reasoning Assistant: Open Questions in Equivalential Calculus and the
Study of fufinite Domains," Artificial Intelligence, Vol. 22, No.3, April, 1984, 303-

356.

