
CSE 573:

Artificial Intelligence

Hanna Hajishirzi

Reinforcement Learning

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Reinforcement Learning

Double Bandits

Double-Bandit MDP

o Actions: Blue, Red

o States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75

$2

0.75 $2

0.25

$0

No discount

10 time steps

Both states

have the same

value

Offline Planning

o Solving MDPs is offline planning

o You determine all quantities through computation

o You need to know the details of the MDP

o You do not actually play the game!

Play Red

Play Blue

Value

No discount

10 time steps

15

10

W L
$1

1.0

$1

1.0

0.25 $0

0.75

$2

0.75 $2

0.25

$0

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Online Planning

o Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??

$2

?? $2

??

$0

Let’s Play!

$0 $0 $2

$0 $2 $2 $0 $0

$0

$0

What Just Happened?

o That wasn’t planning, it was learning!

o Specifically, reinforcement learning

o There was an MDP, but you couldn’t solve it with just computation

o You needed to actually act to figure it out

o Important ideas in reinforcement learning that came up

o Exploration: you have to try unknown actions to get information

o Exploitation: eventually, you have to use what you know

o Regret: even if you learn intelligently, you make mistakes

o Sampling: because of chance, you have to try things repeatedly

o Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s S

o A set of actions (per state) A

o A model T(s,a,s’)

o A reward function R(s,a,s’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Reinforcement Learning

o Basic idea:
o Receive feedback in the form of rewards

o Agent’s utility is defined by the reward function

o Must (learn to) act so as to maximize expected rewards

o All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

Robotics Rubik Cube

o https://www.youtube.com/watch?v=x4O8pojMF0w

https://www.youtube.com/watch?v=x4O8pojMF0w

19

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s S

o A set of actions (per state) A

o A model T(s,a,s’)

o A reward function R(s,a,s’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

o Model-Based Idea:
o Learn an approximate model based on experiences

o Solve for values as if the learned model were correct

o Step 1: Learn empirical MDP model
o Count outcomes s’ for each s, a

o Normalize to give an estimate of

o Discover each when we experience (s, a, s’)

o Step 2: Solve the learned MDP
o For example, use value iteration, as before

Example: Model-Based Learning

Input Policy

Assume: = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Model-Free Learning

Direct Evaluation

o Goal: Compute values for each state under

o Idea: Average together observed sample

values

o Act according to

o Every time you visit a state, write down what the

sum of discounted rewards turned out to be

o Average those samples

o This is called direct evaluation

Example: Direct Evaluation

Input Policy

Assume: = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1

C, east, D, -1

D, exit, x, +10

B, east, C, -1

C, east, D, -1

D, exit, x, +10

E, north, C, -1

C, east, A, -1

A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1

C, east, D, -1

D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C

under this policy, how

can their values be

different?

Problems with Direct Evaluation

o What’s good about direct evaluation?

o It’s easy to understand

o It doesn’t require any knowledge of T, R

o It eventually computes the correct average

values, using just sample transitions

o What bad about it?

o It wastes information about state connections

o Each state must be learned separately

o So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C

under this policy, how

can their values be

different?

Passive Reinforcement Learning

o Simplified task: policy evaluation
o Input: a fixed policy (s)

o You don’t know the transitions T(s,a,s’)

o You don’t know the rewards R(s,a,s’)

o Goal: learn the state values

o In this case:
o Learner is “along for the ride”

o No choice about what actions to take

o Just execute the policy and learn from experience

o This is NOT offline planning! You actually take actions in the world.

Why Not Use Policy Evaluation?

o Simplified Bellman updates calculate V for a fixed policy:
o Each round, replace V with a one-step-look-ahead layer over V

o This approach fully exploited the connections between the states

o Unfortunately, we need T and R to do it!

o Key question: how can we do this update to V without knowing T and R?
o In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Policy Evaluation?

o We want to improve our estimate of V by computing these averages:

o Idea: Take samples of outcomes s’ (by doing the action!) and
average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t

rewind time to get

sample after sample

from state s.

Temporal Difference Learning

o Big idea: learn from every experience!

o Update V(s) each time we experience a transition (s, a, s’, r)

o Likely outcomes s’ will contribute updates more often

o Temporal difference learning of values

o Policy still fixed, still doing evaluation!

o Move values toward value of whatever successor occurs: running

average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

o Exponential moving average

o The running interpolation update:

o Makes recent samples more important

o Forgets about the past (distant past values were wrong anyway)

o Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

o TD value leaning is a model-free way to do policy evaluation,

mimicking Bellman updates with running sample averages

o However, if we want to turn values into a (new) policy, we’re sunk:

o Idea: learn Q-values, not values

o Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

Active Reinforcement Learning

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)

o You don’t know the rewards R(s,a,s’)

o You choose the actions now

o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens…

Detour: Q-Value Iteration

o Value iteration: find successive (depth-limited) values
o Start with V0(s) = 0, which we know is right

o Given Vk, calculate the depth k+1 values for all states:

o But Q-values are more useful, so compute them instead
o Start with Q0(s,a) = 0, which we know is right

o Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go

o Receive a sample (s,a,s’,r)

o Consider your old estimate:

o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

no longer policy

evaluation!

Q-Learning Demo

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler

Q-Learning:

act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)

o You don’t know the rewards R(s,a,s’)

o You choose the actions now

o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens…

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --

even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:

o You have to explore enough

o You have to eventually make the learning rate

small enough

o … but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

Discussion: Model-Based vs Model-Free RL

o Model-Based vs. Model Free

o Active vs. Passive

51

Recap: Reinforcement Learning

o Still assume a Markov decision process (MDP):

o A set of states s S

o A set of actions (per state) A

o A model T(s,a,s’)

o A reward function R(s,a,s’)

o Still looking for a policy (s)

o New twist: don’t know T or R

o I.e. we don’t know which states are good or what the actions do

o Must actually try actions and states out to learn

o Big Idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy Value Learning

Model-Free Learning

o act according to current optimal (based on Q-Values)

o but also explore…

Q-Learning

o Q-Learning: sample-based Q-value iteration

o Learn Q(s,a) values as you go

o Receive a sample (s,a,s’,r)

o Consider your old estimate:

o Consider your new sample estimate:

o Incorporate the new estimate into a running average:

no longer policy

evaluation!

Q-Learning:

act according to current optimal (and also explore…)

o Full reinforcement learning: optimal policies (like value
iteration)
o You don’t know the transitions T(s,a,s’)

o You don’t know the rewards R(s,a,s’)

o You choose the actions now

o Goal: learn the optimal policy / values

o In this case:
o Learner makes choices!

o Fundamental tradeoff: exploration vs. exploitation

o This is NOT offline planning! You actually take actions in the world
and find out what happens…

Q-Learning Properties

o Amazing result: Q-learning converges to optimal policy --

even if you’re acting suboptimally!

o This is called off-policy learning

o Caveats:

o You have to explore enough

o You have to eventually make the learning rate

small enough

o … but not decrease it too quickly

o Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

o Several schemes for forcing exploration

o Simplest: random actions (-greedy)
oEvery time step, flip a coin

oWith (small) probability , act randomly

oWith (large) probability 1-, act on current policy

o Problems with random actions?
oYou do eventually explore the space, but keep

thrashing around once learning is done

oOne solution: lower over time

oAnother solution: exploration functions

Exploration Functions

o When to explore?

o Random actions: explore a fixed amount

o Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

o Exploration function

o Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

o Note: this propagates the “bonus” back to states that lead to unknown states

as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Q-Learn Epsilon Greedy

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Video of Demo Q-learning – Exploration Function –

Crawler

Regret

o Even if you learn the optimal policy,

you still make mistakes along the

way!

o Regret is a measure of your total

mistake cost: the difference

between your (expected) rewards

and optimal (expected) rewards

o Minimizing regret goes beyond

learning to be optimal – it requires

optimally learning to be optimal

o Example: random exploration and

exploration functions both end up

optimal, but random exploration

has higher regret

Approximate Q-Learning

Generalizing Across States

o Basic Q-Learning keeps a table of all q-values

o In realistic situations, we cannot possibly learn
about every single state!
o Too many states to visit them all in training

o Too many states to hold the q-tables in memory

o Instead, we want to generalize:
o Learn about some small number of training states

from experience

o Generalize that experience to new, similar situations

o This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman]

Video of Demo Q-Learning Pacman –

Tiny – Watch All

Video of Demo Q-Learning Pacman –

Tiny – Silent Train

Video of Demo Q-Learning Pacman –

Tricky – Watch All

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

o Solution: describe a state using a vector of
features (properties)
o Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

o Example features:
o Distance to closest ghost

o Distance to closest dot

o Number of ghosts

o 1 / (dist to dot)2

o Is Pacman in a tunnel? (0/1)

o …… etc.

o Is it the exact state on this slide?

o Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

o Using a feature representation, we can write a q function (or value function)
for any state using a few weights:

o Advantage: our experience is summed up in a few powerful numbers

o Disadvantage: states may share features but actually be very different in
value!

Approximate Q-Learning

o Q-learning with linear Q-functions:

o Intuitive interpretation:
o Adjust weights of active features

o E.g., if something unexpectedly bad happens, blame the features that
were on: disprefer all states with that state’s features

o Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Video of Demo Approximate

Q-Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help

New in Model-Free RL

Playing Atari Games

83

Policy Search

Policy Search

o Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
o E.g. your value functions from project 2 were probably horrible estimates of future rewards,

but they still produced good decisions

o Q-learning’s priority: get Q-values close (modeling)

o Action selection priority: get ordering of Q-values right (prediction)

o Solution: learn policies that maximize rewards, not the values that predict them

o Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill
climbing on feature weights

Policy Search

o Simplest policy search:

o Start with an initial linear value function or Q-function

o Nudge each feature weight up and down and see if your policy is better than

before

o Problems:

o How do we tell the policy got better?

o Need to run many sample episodes!

o If there are a lot of features, this can be impractical

o Better methods exploit lookahead structure, sample wisely, change

multiple parameters…

RL: Learning Soccer

[Bansal et al, 2017]

Summary: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy Value Learning

*use features
to generalize

*use features
to generalize

Conclusion

o We’ve seen how AI methods can solve
problems in:
o Search

o Games

o Markov Decision Problems

o Reinforcement Learning

o Next up: Uncertainty and Learning!

