CSE 573 : Artificial Intelligence

Hanna Hajishirzi Neural Networks

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Recap: How to get probabilistic decisions?

- Activation: $z = w \cdot f(x)$
- If z = w ⋅ f(x) very positive → want probability going to 1
 If z = w ⋅ f(x) very negative → want probability going to 0

• Sigmoid function $\phi(z) = \frac{1}{1 + e^{-z}}$ $\phi(z) = \frac{1}{1 + e^{-z}}$

-2

0

2

Recap: Multiclass Logistic Regression

- Multi-class linear classification
 - A weight vector for each class: w_{y}
 - Score (activation) of a class y: $w_y \cdot f(x)$
 - Prediction w/highest score wins: $y = \arg \max w_y \cdot f(x)$

How to make the scores into probabilities?

$$z_{1}, z_{2}, z_{3} \rightarrow \underbrace{\frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}}$$
original activations
softmax activations

Best w?

Maximum likelihood estimation:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

with:
$$P(y^{(i)} | x^{(i)}; w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Optimization

- Optimization
 - i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

Hill Climbing

simple, general idea

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Optimization Procedure: Gradient Ascent

• init
$$w$$

$$w \leftarrow w + \alpha * \nabla g(w)$$

- *α*: learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update changes w about 0.1 1 %

How about computing all the derivatives?

We'll talk about that once we covered neural networks, which are a generalization of logistic regression

Neural Networks

Multi-class Logistic Regression

= special case of neural network

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

Deep Neural Network = Also learn the features!

Common Activation Functions

Sigmoid Function

Rectified Linear Unit (ReLU)

 $g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$$

just w tends to be a much, much larger vector 🙂

- \rightarrow just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

Fun Neural Net Demo Site

- Demo-site:
 - http://playground.tensorflow.org/

How about computing all the derivatives?

Derivatives tables:

 $\frac{d}{dx}(a) = 0$ $\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$ $\frac{d}{dx}(x) = 1$ $\frac{d}{dx} \left[\log_a u \right] = \log_a e \frac{1}{u} \frac{du}{dx}$ $\frac{d}{dx}(au) = a\frac{du}{dx} \qquad \qquad \frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}$ $\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx} \qquad \qquad \frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$ $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \qquad \frac{d}{dx}\left(u^{v}\right) = vu^{v-1}\frac{du}{dx} + \ln u \quad u^{v}\frac{dv}{dx}$ $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx} \qquad \qquad \frac{d}{dx}\sin u = \cos u\frac{du}{dx}$ $\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\cos u = -\sin u\frac{du}{dx}$ $\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\tan u = \sec^2 u\frac{du}{dx}$ $\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx}$ $\frac{d}{dx}\left(\frac{1}{u^n}\right) = -\frac{n}{u^{n+1}}\frac{du}{dx} \qquad \qquad \frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$ $\frac{d}{dx}\csc u = -\csc u\cot u\frac{du}{dx}$ $\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx}$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
- Need to know this exists
- How is this done? -- outside of scope of CSE573

Summary of Key Ideas

- Optimize probability of label given input
- $\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w)$

- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - \rightarrow the features are learned rather than hand-designed
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

Deep Reinforcement Learning