
CSE 573 :

Artificial Intelligence

Hanna Hajishirzi

Neural Networks

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Reminder: Linear Classifiers

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

f1

f2

f3

w1

w2

w3

>0?

Recap: How to get probabilistic decisions?

 Activation:

 If very positive want probability going to 1

 If very negative want probability going to 0

 Sigmoid function

Recap: Multiclass Logistic Regression

 Multi-class linear classification

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction w/highest score wins:

 How to make the scores into probabilities?

original activations softmax activations

Best w?

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Optimization

 Optimization

 i.e., how do we solve:

Hill Climbing

 simple, general idea
 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes about 0.1 – 1 %

 We’ll talk about that once we covered neural networks, which
are a generalization of logistic regression

How about computing all the derivatives?

Neural Networks

Multi-class Logistic Regression

 = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Deep Neural Network = Also learn the features!

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

 Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector

just run gradient ascent

+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

 Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

 Practical considerations

 Can be seen as learning the features

 Large number of neurons

 Danger for overfitting

 (hence early stopping!)

Fun Neural Net Demo Site

 Demo-site:

 http://playground.tensorflow.org/

http://playground.tensorflow.org/

 Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

 But neural net f is never one of those?

 No problem: CHAIN RULE:

If

Then

 Derivatives can be computed by following well-defined procedures

 Automatic differentiation software

 e.g. Theano, TensorFlow, PyTorch, Chainer

 Only need to program the function g(x,y,w)

 Can automatically compute all derivatives w.r.t. all entries in w

 Need to know this exists

 How is this done? -- outside of scope of CSE573

Automatic Differentiation

Summary of Key Ideas

 Optimize probability of label given input

 Continuous optimization
 Gradient ascent:

 Compute steepest uphill direction = gradient (= just vector of partial derivatives)

 Take step in the gradient direction

 Repeat (until held-out data accuracy starts to drop = “early stopping”)

 Deep neural nets
 Last layer = still logistic regression

 Now also many more layers before this last layer
 = computing the features

 the features are learned rather than hand-designed

 Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 573)

Deep Reinforcement Learning

