
CSE 573 :

Artificial Intelligence

Hanna Hajishirzi

Machine Learning, Perceptrons,

and Logistic Regression

Part 2

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Recap: Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data /

experience

 Learning parameters (e.g. probabilities)

 Learning structure (e.g. graphs)

 Learning hidden concepts (e.g. clustering)

 First: model-based classification

Recap: Spam Filter

 Input: an email

 Output: spam/ham

 Setup:
 Get a large collection of example emails, each

labeled “spam” or “ham”

 Note: someone has to hand label all this data!

 Want to learn to predict labels of new, future
emails

 Features: The attributes used to make the
ham / spam decision
 Words: FREE!

 Text Patterns: $dd, CAPS

 Non-text: SenderInContacts, WidelyBroadcast

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Recap: Feature Vectors in Linear Classifier

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Recap: Weights

 Binary case: compare features to a weight vector

 Learning: figure out the weight vector from examples

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive

means the positive class

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

free : 4

money : 2

0 1
0

1

2

free
m

o
n
e
y

Recap: Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

+1 = SPAM

-1 = HAM

Recap: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector

Recap: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

Recap: Multiclass Decision Rule

 If we have multiple classes:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Recap: Multiclass Perceptron

 Start with all weights = 0

 Pick up training examples one by one

 Predict with current weights

 If correct, no change!

 If wrong: lower score of wrong
answer, raise score of right answer

Recap: Multiclass Perceptron

BIAS : 1

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1

1

0

1

1

0

-1

0

-1

-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3

1

0

1

-1

0

0

0

-1

1

0

Properties of Perceptrons

 Separability: true if some parameters get the training
set perfectly correct

 Convergence: if the training is separable, perceptron
will eventually converge (binary case)

 Non-separable?

Separable

Non-Separable

Workflow

Workflow

 Phase 1: Train model on Training Data. Choice points for “tuning”
 Attributes / Features

 Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..

 Model hyperparameters

 E.g. Naïve Bayes – Laplace k

 E.g. Logistic Regression – weight regularization

 E.g. Neural Net – architecture, learning rate, …

 Make sure good performance on training data (why?)

 Phase 2: Evaluate on Hold-Out Data
 If Hold-Out performance is close to Train performance

 We achieved good generalization, onto Phase 3!

 If Hold-Out performance is much worse than Train performance
 We overfitted to the training data!

 Take inspiration from the errors and:

 Either: go back to Phase 1 for tuning (typically: make the model less expressive)

 Or: if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

 Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data

Training

Data

Held-Out

Data

Test

Data

Training and Testing

Underfitting and Overfitting

Overfitting

 Too many features
 Spam if contains “FREE!”

 Spam if contains $dd, CAPS

 …

 Spam if contains “Sir”

 Spam if contains address

 Spam if contains “OT”

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Unseen Events

Generalization and Overfitting

 Relative frequency parameters will overfit the training data!

 Just because we never saw a non-spam email with an address during training doesn’t mean we won’t
see it at test time

 Unlikely that every occurrence of “minute” is 100% spam

 Unlikely that every occurrence of “seriously” is 100% ham

 What about all the words that don’t occur in the training set at all?

 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature

 Would get the training data perfect (if deterministic labeling)

 Wouldn’t generalize at all

 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates

− | |

Regularization

 Limit the number of features

 Limit the norm of the vector w

 If w1 and w2 are equally good,
and |w1 |>|w2 |, then w2 is likely
to better generalize # free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

free : 8

YOUR_NAME :-2

MISSPELLED : 2

FROM_FRIEND :-6

...

w1

w2

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set

 Held out set

 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set

 (Tune hyperparameters on held-out set)

 Compute accuracy on test set

 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data

 Overfitting: fitting the training data very closely, but not
generalizing well

 Underfitting: fits the training set poorly

Training

Data

Held-Out

Data

Test

Data

Tuning

Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns

 Parameters: the probabilities P(X|Y), P(Y)

 Hyperparameters: e.g. the amount / type of
smoothing to do, k,

 What should we learn where?

 Learn parameters from training data

 Tune hyperparameters on different data

 Why?

 For each value of the hyperparameters, train
and test on the held-out data

 Choose the best value and do a final test on
the test data

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Improving the Perceptron

Problems with the Perceptron

 Noise: if the data isn’t separable,
weights might thrash
 Averaging weight vectors over time

can help (averaged perceptron)

 Mediocre generalization: finds a
“barely” separating solution

 Overtraining: test / held-out
accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get probabilistic decisions?

 Perceptron scoring:

 If very positive want probability going to 1

 If very negative want probability going to 0

 Sigmoid function

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially

as we move away from boundary

normalizer

The Soft Max

Best w?

 Maximum likelihood estimation:

with:

= Logistic Regression

Confidences from a Classifier

 The confidence of a probabilistic classifier:
 Posterior over the top label

 Represents how sure the classifier is of the
classification

 Any probabilistic model will have
confidences

 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean

higher accuracy

 Strong calibration: confidence predicts
accuracy rate

 What’s the value of calibration?

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

0.5 | 0.5
0.3 | 0.7

0.7 | 0.3

Multiclass Logistic Regression

 Recall Perceptron:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

 How to make the scores into probabilities?

original activations softmax activations

Best w?

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

Best w?

 Optimization

 i.e., how do we solve:

Hill Climbing

 Simple, general idea

 Start wherever

 Repeat: move to the best neighboring state

 If no neighbors better than current, quit

 What’s particularly tricky when hill-climbing for
multiclass logistic regression?

• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

1-D Optimization

 Could evaluate and

 Then step in best direction

 Or, evaluate derivative:

 Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

 Perform update in uphill direction for each coordinate

 E.g., consider:

 Updates:

 Updates in vector notation:

with: = gradient

 Idea:

 Start somewhere

 Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

 init

 for iter = 1, 2, …

 : learning rate --- tweaking parameter that needs to be
chosen carefully

 How? Try multiple choices

 Crude rule of thumb: update changes about 0.1 – 1 %

Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …

 pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood

Objective

 init

 for iter = 1, 2, …

 pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

 We’ll talk about that in neural networks, which are a

generalization of logistic regression

How about computing all the derivatives?

