
CSE 573 :

Artificial Intelligence

Hanna Hajishirzi

Machine Learning, Perceptrons

slides adapted from

Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer 1

Machine Learning

 Up until now: how use a model to make optimal decisions

 Machine learning: how to acquire a model from data /

experience

 Learning parameters (e.g. probabilities)

 Learning structure (e.g. graphs)

 Learning hidden concepts (e.g. clustering)

 First: model-based classification

Classification

Example: Spam Filter

 Input: an email

 Output: spam/ham

 Setup:
 Get a large collection of example emails, each

labeled “spam” or “ham”

 Note: someone has to hand label all this data!

 Want to learn to predict labels of new, future
emails

 Features: The attributes used to make the
ham / spam decision
 Words: FREE!

 Text Patterns: $dd, CAPS

 Non-text: SenderInContacts, WidelyBroadcast

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Example: Digit Recognition

 Input: images / pixel grids

 Output: a digit 0-9

 Setup:
 Get a large collection of example images, each labeled with a

digit

 Note: someone has to hand label all this data!

 Want to learn to predict labels of new, future digit images

 Features: The attributes used to make the digit decision

 Pixels: (6,8)=ON

 Shape Patterns: NumComponents, AspectRatio, NumLoops

 …

0

1

2

1

??

Other Classification Tasks

 Classification: given inputs x, predict labels (classes) y

 Examples:
 Spam detection

input: document; classes: spam / ham

 OCR
input: images; classes: characters

 Medical diagnosis
input: symptoms; classes: diseases

 Automatic essay grading
input: document; classes: grades

 Fraud detection
input: account activity; classes: fraud / no fraud

 Customer service email routing

 … many more

 Classification is an important commercial technology!

Linear Classifiers

A Spam Filter

 Data:
 Collection of emails,

labeled spam or ham

 Note: someone has to
hand label all this data!

 Split into training, held-
out, test sets

 Classifiers
 Learn on the training set

 (Tune it on a held-out set)

 Test it on new emails

Dear Sir.

First, I must solicit your confidence in this

transaction, this is by virture of its nature

as being utterly confidencial and top

secret. …

TO BE REMOVED FROM FUTURE

MAILINGS, SIMPLY REPLY TO THIS

MESSAGE AND PUT "REMOVE" IN THE

SUBJECT.

99 MILLION EMAIL ADDRESSES

FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm

beginning to go insane. Had an old Dell

Dimension XPS sitting in the corner and

decided to put it to use, I know it was

working pre being stuck in the corner, but

when I plugged it in, hit the power nothing

happened.

Feature Vectors

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

+

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Some (Simplified) Biology

 Very loose inspiration: human neurons

Linear Classifiers

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:
 Positive, output +1

 Negative, output -1

f1

f2

f3

w1

w2

w3

>0?

Weights

 Binary case: compare features to a weight vector

 Learning: figure out the weight vector from examples

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

Dot product positive

means the positive class

Decision Rules

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

free : 4

money : 2

0 1
0

1

2

free
m

o
n
e
y

Binary Decision Rule

 In the space of feature vectors

 Examples are points

 Any weight vector is a hyperplane

 One side corresponds to Y=+1

 Other corresponds to Y=-1

BIAS : -3

free : 4

money : 2

...
0 1

0

1

2

free
m

o
n
e
y

+1 = SPAM

-1 = HAM

How do we learn weight?

Weight Updates

Learning: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector

Learning: Binary Perceptron

 Start with weights = 0

 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!

 If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

Examples: Perceptron

 Separable Case

Multiclass Decision Rule

 If we have multiple classes:

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

 Start with all weights = 0

 Pick up training examples one by one

 Predict with current weights

 If correct, no change!

 If wrong: lower score of wrong
answer, raise score of right answer

Example: Multiclass Perceptron

BIAS : 1

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

BIAS : 0

win : 0

game : 0

vote : 0

the : 0

...

“win the vote”

“win the election”

“win the game”

[1 1 0 1 1]

1 0 0

1

1

0

1

1

0

-1

0

-1

-1

[1 1 0 0 1]

-2 3 0

[1 1 1 0 1]

-2 3

1

0

1

-1

0

0

0

-1

1

0

Properties of Perceptrons

 Separability: true if some parameters get the training
set perfectly correct

 Convergence: if the training is separable, perceptron
will eventually converge (binary case)

 Non-separable?

Separable

Non-Separable

Problems with the Perceptron

 Noise: if the data isn’t separable,
weights might thrash
 Averaging weight vectors over time

can help (averaged perceptron)

 Mediocre generalization: finds a
“barely” separating solution

 Overtraining: test / held-out
accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Training and Testing

Underfitting and Overfitting

Overfitting

 Too many features
 Spam if contains “FREE!”

 Spam if contains $dd, CAPS

 …

 Spam if contains “Sir”

 Spam if contains address

 Spam if contains “OT”

 …

Dear Sir.

First, I must solicit your confidence in
this transaction, this is by virture of its
nature as being utterly confidencial and
top secret. …

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, I know it was
working pre being stuck in the corner,
but when I plugged it in, hit the power
nothing happened.

Example: Overfitting

2 wins!!

Overfitting

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Unseen Events

Generalization and Overfitting

 Relative frequency parameters will overfit the training data!

 Just because we never saw a non-spam email with an address during training doesn’t mean we won’t
see it at test time

 Unlikely that every occurrence of “minute” is 100% spam

 Unlikely that every occurrence of “seriously” is 100% ham

 What about all the words that don’t occur in the training set at all?

 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only feature

 Would get the training data perfect (if deterministic labeling)

 Wouldn’t generalize at all

 Just making the bag-of-words assumption gives us some generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates

− | |

Regularization

 Limit the number of features

 Limit the norm of the vector
w

 If w1 and w2 are equally
good, and |w1 |>|w2 |, then
w2 is likely to better
generalize

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

free : 4

YOUR_NAME :-1

MISSPELLED : 1

FROM_FRIEND :-3

...

free : 0

YOUR_NAME : 1

MISSPELLED : 1

FROM_FRIEND : 1

...

free : 8

YOUR_NAME :-2

MISSPELLED : 2

FROM_FRIEND :-6

...

w1

w2

Important Concepts

 Data: labeled instances, e.g. emails marked spam/ham
 Training set

 Held out set

 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set

 (Tune hyperparameters on held-out set)

 Compute accuracy on test set

 Very important: never “peek” at the test set!

 Evaluation
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data

 Overfitting: fitting the training data very closely, but not
generalizing well

 Underfitting: fits the training set poorly

Training

Data

Held-Out

Data

Test

Data

Tuning

Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns

 Parameters: the probabilities P(X|Y), P(Y)

 Hyperparameters: e.g. the amount / type of
smoothing to do, k,

 What should we learn where?

 Learn parameters from training data

 Tune hyperparameters on different data

 Why?

 For each value of the hyperparameters, train
and test on the held-out data

 Choose the best value and do a final test on
the test data

Practical Tip: Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures

 Help determine how hard the task is

 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the training set

 E.g. for spam filtering, might label everything as ham

 Accuracy might be very high if the problem is skewed

 E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good…

 For real research, usually use previous work as a (strong) baseline

Improving the Perceptron: Next lecture!

