CSE 573: Artificial Intelligence

Constraint Satisfaction Problems
 Factored (aka Structured) Search

Final Presentations

- 21 groups / 40 people / 110 min
- Minus transfers \& tournament replay
- Presentations (with questions)
- One person groups
2.5 min
- Two person groups
4.5 min
- Three person groups
6.5 min
- Everyone should speak (unless OOT)
- Rehearse
- Add URL for slides to g-doc
- https://docs.google.com/spreadsheets/d/1Qt5BW0DkSAg6Q4MOM98jSSwjR2wTZpi5i01XdTOX-fs/edit\#gid=0

Final report

- Default project ~2 pages
- Other projects ~6 pages
- Experiments
- Lessons learned
- http://courses.cs.washington.edu/courses/cse573/17wi/reports.html
- Everyone
- See note on appendices - dynamics \& external code

Al Topics

- Search
- Problem spaces
- BFS, DFS, UCS, A* (tree and graph), local search
- Completeness and Optimality
- Heuristics: admissibility and consistency; pattern DBs
- CSPs
- Constraint graphs, backtracking search
- Forward checking, AC3 constraint propagation, ordering heuristics
- Games
- Minimax, Alpha-beta pruning,
- Expectimax
- Evaluation Functions
- MDPs
- Bellman equations
- Value iteration, policy iteration
- Reinforcement Learning
- Exploration vs Exploitation
- Model-based vs. model-free
- Q-learning
- Linear value function approx.
- Hidden Markov Models
- Markov chains, DBNs
- Forward algorithm
- Particle Filters
- POMDPs
- Belief space
- Piecewise linear approximation to value fun
- Beneficial AI
- Bayesian Networks
- Basic definition, independence (d-sep)
- Variable elimination
- Sampling (rejection, importance)
- Learning
- BN parameters with complete data
- Search thru space of BN structures
- Eunantation mavimiantion

What is intelligence?

- (bounded) Rationality
- Agent has a performance measure to optimize
- Given its state of knowledge
- Choose optimal action
- With limited computational resources
- Human-like intelligence/behavior

State-Space Search

- X as a search problem
- states, actions, transitions, cost, goal-test
- Types of search
- uninformed systematic: often slow
- DFS, BFS, uniform-cost, iterative deepening
- Heuristic-guided: better
- Greedy best first, A*

start State

- Relaxation leads to heuristics
- Local: fast, fewer guarantees; often local optimal
- Hill climbing and variations
- Simulated Annealing: global optimal

- (Local) Beam Search

Which Algorithm?

- A*, Manhattan Heuristic:

Adversarial Search

$\operatorname{MAX}(X)$

MIN (O)

MAX (X)

MIN (O)

TERMINAL
Utility

Adversarial Search

- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
- alpha-beta pruning
- Utility function for partial search
- Learning utility functions by playing with itself
- Openings/Endgame databases

Policy Iteration

- Let $\mathrm{i}=0$
- Initialize $\pi_{i}(s)$ to random actions
- Repeat
- Step 1: Policy evaluation:
- Initialize $\mathrm{k}=0$; Forall $\mathrm{s}, \mathrm{V}_{0}{ }^{\pi}(\mathrm{s})=0$
- Repeat until V^{π} converges
- For each state $\mathrm{s}, \quad V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{i}(s), s^{\prime}\right)\left[R\left(s, \pi_{i}(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]$
- Let $\mathrm{k}+=1$
- Let $\mathrm{k}+=1$
- Step 2: Policy improvement:
- For each state, $s, \quad \pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{i}}\left(s^{\prime}\right)\right]$
- If $\pi_{i}==\pi_{i+1}$ then it's optimal; return it.
- Else let $\mathrm{i}+=1$

Example

Initialize π_{0} to "always go right"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?
Yes! $\mathrm{i}+=1$

Example

π_{1} says "always go up"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?
No! We have the optimal policy

Reinforcement Learning

- Forall s, a
- Initialize Q(s, a) = 0
- Repeat Forever

Where are you? s.
Choose some action a
Execute it in real world: transition $=\left(s, a, r, s^{\prime}\right)$
Do update:

$$
\begin{aligned}
& \text { difference }=\left[r+\underset{a^{\prime}}{\max } Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) \\
& Q(s, a) \leftarrow Q(s, a)+\alpha[\text { difference }]
\end{aligned}
$$

Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Forall s, a
- Initialize $\mathbf{w}_{\mathrm{i}}=0$
- Repeat Forever

Where are you? s.
Choose some action a
Execute it in real world: transition $=\left(s, a, r, s^{\prime}\right)$
Do updates:

$$
\begin{aligned}
& \text { difference }=\left[r+\gamma \max Q\left(s^{\prime}, a^{\prime}\right)\right]-Q(s, a) \\
& w_{i} \leftarrow w_{i}+\alpha[\text { difference }] f_{i}(s, a)
\end{aligned}
$$

- Interpretation as search
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the active features

Approximate Q-Learning

$$
Q(s, a)=w_{1} f_{1}(s, a)+w_{2} f_{2}(s, a)+\ldots+w_{n} f_{n}(s, a)
$$

- Q-learning with linear Q-functions:

$$
\begin{array}{ll}
\text { transition }=\left(s, a, r, s^{\prime}\right) & \\
\begin{aligned}
Q(s, a) & \leftarrow Q(s, a)+\alpha \text { [difference] }
\end{aligned} & \text { Old way: Exact Q's } \\
w_{i} & \leftarrow w_{i}+\alpha \text { [difference] } f_{i}(s, a)
\end{array} \quad \text { Now: Approximate Q's }
$$

- Intuitive interpretation:
- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were active: disprefer all states with that state's features

What is Search For?

- Planning: sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Assume little about problem structure
- Identification: assignments to variables
- The goal itself is important, not the path
- All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are structured (factored) identification problems

Constraint Satisfaction Problems

- Standard search problems:
- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
- State is defined by variables $\boldsymbol{X}_{\boldsymbol{i}}$ with values from a domain \boldsymbol{D} (sometimes \boldsymbol{D} depends on \boldsymbol{i})
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Making use of CSP formulation allows for optimized algorithms
- Typical example of trading generality for utility (in this
 case, speed)

Constraint Satisfaction Problems

- "Factoring" the state space
- Representing the state space in a knowledge representation
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
- State is defined by variables \boldsymbol{X}_{i} with values from a domain \boldsymbol{D} (sometimes \boldsymbol{D} depends on \boldsymbol{i})
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

CSP Example: N -Queens

Is there a queen at $X_{i j}$?

- Formulation 1:
- Variables: $X_{i j}$

- Domains: $\{0,1\}$
- Constraints

$$
\begin{array}{lll}
\forall i, j, k & \left(X_{i j}, X_{i k}\right) \in\{(0,0),(0,1),(1,0)\} & \\
\forall i, j, k \quad\left(X_{i j}, X_{k j}\right) \in\{(0,0),(0,1),(1,0)\} & \sum_{i, j} X_{i j}=N \\
\forall i, j, k \quad\left(X_{i j}, X_{i+k, j+k}\right) \in\{(0,0),(0,1),(1,0)\} & \\
\forall i, j, k \quad\left(X_{i j}, X_{i+k, j-k}\right) \in\{(0,0),(0,1),(1,0)\} &
\end{array}
$$

CSP Example: N -Queens

What column is the queen on for row k ?

- Variables: Q_{k}
- Domains: $\{1,2,3, \ldots N\}$

- Constraints:

Implicit: $\quad \forall i, j$ non-threatening $\left(Q_{i}, Q_{j}\right)$
Explicit: $\quad\left(Q_{1}, Q_{2}\right) \in\{(1,3),(1,4), \ldots\}$

CSP Example: Sudoku

- Variables:
- Each (open) square
- Domains:
- $\{1,2, \ldots, 9\}$
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Propositional Logic

$((p \leftrightarrow q) \wedge r) \vee(p \wedge q \wedge \sim r)$

- Variables: propositional variables
- Domains: $\{T, F\}$
- Constraints: logical formula

CSP Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: $D=\{$ red, green, blue $\}$
- Constraints: adjacent regions must have different colors

Implicit: WA $\neq N T$
Explicit: $\quad(W A, N T) \in\{($ red, green $),($ red, blue $), \ldots\}$

- Solutions are assignments satisfying all constraints, e.g.:

$$
\begin{aligned}
& \{W A=\text { red, } N T=\text { green, } Q=\text { red, } N S W=\text { green, } \\
& V=\text { red, } S A=\text { blue, } T=\text { green }\}
\end{aligned}
$$

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an

(independent subproblem!

Example: Cryptarithmetic

- Variables:

FTUWRO $X_{1} X_{2} X_{3}$

- Domains:

$$
\{0,1,2,3,4,5,6,7,8,9\}
$$

- Constraints:
alldiff(F, T, U, W, R, O)
$O+O=R+10 \cdot X_{1}$

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Space Shuttle Repair
- Transportation scheduling
- Factory scheduling
- ... lots more!

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an Al computation posed as a CSP

Waltz on Simple Scenes

- Assume all objects:
- Have no shadows or cracks
- Three-faced vertices
- "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
- Boundary line (edge of an object) (>) with right
 hand of arrow denoting "solid" and left hand denoting "space"
- Interior convex edge (+)
- Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: edges
- Domains: >, <, +, -
- Constraints: legal junction types

Slight Problem: Local vs Global Consistency

Varieties of CSPs

Varieties of CSP Variables

- Discrete Variables
- Finite domains
- Size d means $\mathrm{O}\left(d^{n}\right)$ complete assignments
- E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
- Infinite domains (integers, strings, etc.)
- E.g., job scheduling, variables are start/end times for each job

- Linear constraints solvable, nonlinear undecidable
- Continuous variables
- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

- Varieties of Constraints
- Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$
\text { SA } \neq \text { green }
$$

- Binary constraints involve pairs of variables, e.g.:

$$
S A \neq W A
$$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Solving CSPs

CSP as Search

- States
- Operators
- Initial State
- Goal State

Standard Depth First Search

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
- Initial state: the empty assignment, \{\}
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
- Variable assignments are commutative, so fix ordering
- l.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search
- Can solve n -queens for $\mathrm{n} \approx 25$

Backtracking Example

Backtracking Search

function BACKTRACKING-SEARCH ($c s p$) returns solution/failure return Recursive-Backtracking(\{ \}, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
$v a r \leftarrow$ Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add $\{$ var $=$ value $\}$ to assignment
result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp)
if result \neq failure then return result
remove $\{$ var $=$ value $\}$ from assignment
return failure

- What are the choice points?
[Demo: coloring -- backtracking]

Backtracking Search

- Kind of depth first search
- Is it complete?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
- Which variable should be assigned next?
- In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

WA	NT	Q	NSW	V	SA

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

- Forward checking only propagates information from assigned to unassigned
- It doesn't catch when two unassigned variables have no consistent assignment:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of a Single Arc

- An $\operatorname{arc} X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

- Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

AC-3 algorithm for Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ Remove-First(queue)
if Remove-Inconsistent- $\operatorname{Values}\left(X_{i}, X_{j}\right)$ then for each X_{k} in Neighbors $\left[X_{i}\right]$ do add $\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff succeeds removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in $\operatorname{Domain}\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$ then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed

- Runtime: $O\left(n^{2} d^{3}\right)$, can be reduced to $O\left(n^{2} d^{2}\right)$
- ... but detecting all possible future problems is NP-hard - why?
[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

- After enforcing arc consistency:
- Can have one solution left
- Can have multiple solutions left
- Can have no solutions left
 (and not know it)
- Even with Arc Consistency you still need backtracking search!
- Could run at even step of that search

What went

- Usually better to run it once, before search

Video of Demo Coloring - Backtracking with Forward Checking Complex Graph

Video of Demo Coloring - Backtracking with Arc Consistency Complex Graph

K-Consistency

K-Consistency

- Increasing degrees of consistency
- 1-Consistency (Node Consistency): Each single variable's domain has a value which meets that variables unary constraints

- 2-Consistency (Arc Consistency): For each pair of variables, any consistent assignment to one can be extended to the other
- 3-Consistency (Path Consistency): For every set of 3 vars, any consistent assignment to 2 of the variables can be extended to the third var
- K-Consistency: For each k nodes, any consistent assignment to $k-1$ can be extended to the $k^{\text {th }}$ node.
- Higher k more expensive to compute
- (You need to know the algorithm for k=2 case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- .

Ordering

Backtracking Search

function BACKTRACKING-SEARCH $(c s p)$ returns solution/failure return Recursive-Backtracking(\{ \}, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure if assignment is complete then return assignment
$v a r \leftarrow$ Select-Unassigned-Variable(Variables [csp], assignment, csp)
for each value in ORDEK-DOMAIN-VALUES (var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add $\{$ var $=$ value $\}$ to assignment
result \leftarrow Recursive-BAckTRACKING (assignment, csp)
if result \neq failure then return result
remove $\{$ var $=$ value $\}$ from assignment
return failure

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Maximum Degree

- Tie-breaker among MRV variables
- What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic:
- Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Rationale for MRV, MD, LCV

- We want to enter the most promising branch, but we also want to detect failure quickly
- MRV+MD:
- Choose the variable that is most likely to cause failure
- It must be assigned at some point, so if it is doomed to fail, better to find out soon
- LCV:
- We hope our early value choices do not doom us to failure
- Choose the value that is most likely to succeed

Trapped

- Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.
- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all. Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes. For example, if he stands between a
 pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements for all intersections are shown in the figure below.
- Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

Trapped

- Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.
- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all. Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements for all intersections are shown in the figure below.
- Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

Trapped

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

Variables? $\mathrm{X}_{1}, \ldots \mathrm{X}_{6}$
Domains $\{P, G, E\}$

Trapped

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

$$
\begin{array}{lll}
X_{1}=P & \text { or } X_{2}=P & X_{4}=P \\
X_{2}=E & \text { or } X_{3}=P & X_{5}=P \\
X_{3}=E & \text { or } X_{4}=E & X_{6}=P \\
& & \text { or } X_{1}=P \\
& & \\
X_{i}=E & \text { nand } X_{i+1 \mid 7}=E & \\
& & \text { Also! } \begin{array}{l}
X_{2}=/=P \\
X_{3}=/=P \\
\\
\end{array}
\end{array}
$$

X_{1}	P	G	E
X_{2}	P	G	E
X_{3}	P	G	E
X_{4}	P	G	E
X_{5}	P	G	E
X_{6}	P	G	E

Trapped

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

$$
\begin{array}{lll}
X_{1}=P & \text { or } X_{2}=P & X_{4}=P \\
X_{2}=E & \text { or } X_{3}=E & X_{5}=P \\
X_{3}=E & \text { or } X_{4}=E & X_{6}=P \\
& & \text { or } X_{6}=P \\
& & \\
X_{i}=E & \text { nand } X_{i+1 \mid 7}=E & \\
& & \text { Also! } \begin{array}{l}
X_{2}=/=P \\
X_{3}=/=P \\
\\
\end{array}
\end{array}
$$

Arc consistent?

X_{1}	P	G	E
X_{2}	P	G	E
X_{3}	P	G	E
X_{4}	P	G	E
X_{5}	P	G	E
X_{6}	P	G	E

Trapped

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

$$
\begin{aligned}
& X_{1}=P \quad \text { or } \quad X_{2}=P \quad X_{4}=P \quad \text { or } \quad X_{5}=P \\
& X_{2}=E \quad \text { or } \quad X_{3}=E \quad X_{5}=P \text { or } X_{6}=P \\
& X_{3}=E \quad \text { or } X_{4}=E \quad X_{6}=P \text { or } X_{1}=P \\
& X_{i}=E \quad \text { nand } \quad X_{i+1 \mid 7}=E \\
& \text { Also! } X_{2}=/=P \\
& X_{3}=1=P \\
& X_{4}=/=P
\end{aligned}
$$

Arc consistent?

X_{1}	P	$\not \subset$	$\not \subset$
X_{2}	$\not \subset$	G	E
X_{3}	$\not 口$	G	E
X_{4}	$\not \subset$	G	E
X_{5}	P	$\not \subset$	$\not \subset$
X_{6}	P	G	E

Structure

Problem Structure

- Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
- Worst-case solution cost is $\mathrm{O}\left((\mathrm{n} / \mathrm{c})\left(\mathrm{d}^{\mathrm{c}}\right)\right)$, linear in n

- E.g., $n=80, d=2, c=20$
- $2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
- $(4)\left(2^{20}\right)=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
- Compare to general CSPs, where worst-case time is O(dn)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $i=1: n$, assign X_{i} consistently with $\operatorname{Parent}\left(X_{i}\right)$
- Runtime: O(n d ${ }^{2}$) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y 's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Connection to Bayes Nets

Bayes Net Example: Alarm Network

E	$P(E)$
$+e$	0.002
-e	0.998

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

More Complex Bayes' Net: Auto Diagnosis

Hidden Markov Model (Tree Structured)

- An HMM is defined by:
- Initial distribution:

$$
\begin{aligned}
& P\left(X_{1}\right) \\
& P\left(X_{t} \mid X_{t-1}\right) \\
& P(E \mid X)
\end{aligned}
$$

Forward Algorithm

More Complex HMM Inference

- Forward Backward
- Computes marginal probabilities of all hidden states given sequence of observations

$$
P\left(x_{t}=\text { value }\right)
$$

More Complex HMM Inference

- Forward Backward
- Computes marginal probabilities of all hidden states given sequence of observations
- Viterbi
- Computes most likely sequence of states

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $\left.O\left(d^{c}\right)(\mathrm{n}-\mathrm{c}) \mathrm{d}^{2}\right)$, very fast for small c

Cutset Conditioning

Instantiate the cutset (all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs (tree structured)

Cutset Quiz

- Find the smallest cutset for the graph below.

Local Search for CSPs

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values
- No fringe! Live on the edge.
- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
- I.e., hill climb with $h(n)=$ total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Summary: CSPs

- CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
- Ordering
- Filtering
- Structure (cutset conditioning)

- Iterative min-conflicts is often effective in practice

