
CSE	573:	Artificial	Intelligence
Constraint	Satisfaction	Problems
Factored	(aka	Structured)	Search

[With	many	slides	by	Dan	Klein	and	Pieter	Abbeel (UC	Berkeley)	available	at	http://ai.berkeley.edu.]

Final	Presentations
§ 21	groups	/	40	people	/	110	min

§ Minus	transfers	&	tournament	replay

§ Presentations	(with	questions)
§ One	person	groups 2.5	min
§ Two	person	groups 4.5	min
§ Three	person	groups 6.5	min

§ Everyone	should	speak	(unless	OOT)
§ Rehearse	
§ Add	URL	for	slides	to	g-doc

§ https://docs.google.com/spreadsheets/d/1Qt5BW0DkSAg6Q4MOM98jSSwjR2wTZpi5i01XdT0X-fs/edit#gid=0
2

Final	report

§ Default	project	~2	pages
§ Other	projects	~6	pages

§ Experiments
§ Lessons	learned
§ http://courses.cs.washington.edu/courses/cse573/17wi/reports.html

§ Everyone	
§ See	note	on	appendices	– dynamics	&	external	code

3

AI	Topics

§ Search
§ Problem	spaces
§ BFS,	DFS,	UCS,	A*	(tree	and	graph),	local	search
§ Completeness	and	Optimality
§ Heuristics:	admissibility	and	consistency;	pattern	DBs

§ CSPs
§ Constraint	graphs,	backtracking	search
§ Forward	checking,	AC3	constraint	propagation,	ordering	

heuristics
§ Games

§ Minimax,	Alpha-beta	pruning,	
§ Expectimax
§ Evaluation	Functions

§ MDPs
§ Bellman	equations
§ Value	iteration,	policy	iteration

§ Reinforcement Learning
§ Exploration vs Exploitation
§ Model-based vs. model-free
§ Q-learning
§ Linear value function approx.

§ Hidden Markov Models
§ Markov chains, DBNs
§ Forward algorithm
§ Particle Filters

§ POMDPs
§ Belief space
§ Piecewise linear approximation to value fun

§ Beneficial AI
§ Bayesian Networks

§ Basic definition, independence (d-sep)
§ Variable elimination
§ Sampling (rejection, importance)

§ Learning
§ BN parameters with complete data
§ Search thru space of BN structures
§ Expectation maximization

What	is	intelligence?

§ (bounded)	Rationality
§ Agent	has	a	performance	measure	to	optimize
§ Given	its	state	of	knowledge
§ Choose	optimal	action	
§ With	limited	computational	resources

§ Human-like	intelligence/behavior

State-Space	Search
§ X	as	a	search	problem

§ states,	actions,	transitions,	cost,	goal-test
§ Types	of	search

§ uninformed	systematic:	often	slow
§ DFS,	BFS,	uniform-cost,	iterative	deepening

§ Heuristic-guided:	better
§ Greedy	best	first,	A*
§ Relaxation	leads	to	heuristics

§ Local: fast,	fewer	guarantees;	often	local	optimal
§ Hill	climbing	and	variations
§ Simulated	Annealing:	global	optimal

§ (Local)	Beam	Search

Which	Algorithm?

§ A*, Manhattan Heuristic:

Adversarial	Search

Adversarial	Search

§ AND/OR	search	space	(max,	min)
§ minimax objective	function
§ minimax algorithm	(~dfs)

§ alpha-beta	pruning

§ Utility	function	for	partial	search
§ Learning	utility	functions	by	playing	with	itself

§ Openings/Endgame	databases

Policy	Iteration
§ Let	i =0
§ Initialize	πi(s)	to	random	actions
§ Repeat

§ Step	1:	Policy	evaluation:
§ Initialize	k=0;				Forall s,	V0

π (s)	=	0
§ Repeat	until	Vπ converges

§ For	each	state	s,	

§ Let	k	+=	1
§ Step	2:	Policy	improvement:	

§ For	each	state,	s,	

§ If	πi ==	πi+1 then	it’s	optimal;	return	it.	
§ Else	let	i +=	1

Example

Initialize	π0	to “always	go	right”

Perform	policy	evaluation

Perform	policy	improvement
Iterate	through	states ?

?

?

Has	policy	changed?

Yes!		i +=	1

Example

π1	says	“always	go	up”

Perform	policy	evaluation

Perform	policy	improvement
Iterate	through	states ?

?

?

Has	policy	changed?

No!		We	have	the	optimal	policy

Reinforcement	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: transition =(s, a, r, s’)
Do update:

Approximate	Q-Learning

§ Interpretation	as	search
§ Adjust	weights	of	active	features
§ E.g.,	if	something	unexpectedly	bad	happens,	blame	the	active	features

§ Forall s,	a	
§ Initialize	wi=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: transition =(s, a, r, s’)
Do updates:

Approximate	Q-Learning

§ Q-learning	with	linear	Q-functions:

§ Intuitive	interpretation:
§ Adjust	weights	of	active	features
§ E.g.,	if	something	unexpectedly	bad	happens,	blame	the	features	that	were	active:	

disprefer all	states	with	that	state’s	features

Old way: Exact Q’s

Now: Approximate Q’s

What	is	Search	For?

§ Planning:	sequences	of	actions
§ The	path	to	the	goal is	the	important	thing
§ Paths	have	various	costs,	depths
§ Assume	little	about	problem	structure

§ Identification:	assignments	to	variables
§ The	goal	itself	is	important,	not	the	path
§ All	paths	at	the	same	depth	(for	some	formulations)

Constraint	Satisfaction	Problems

CSPs are structured (factored) identification problems

Constraint	Satisfaction	Problems

§ Standard	search	problems:
§ State	is	a	“black	box”:	arbitrary	data	structure
§ Goal	test	can	be	any	function	over	states
§ Successor	function	can	also	be	anything

§ Constraint	satisfaction	problems	(CSPs):
§ A	special	subset	of	search	problems
§ State	is	defined	by	variables	Xi with	values	from	a	

domain	D (sometimes	D depends	on	i)
§ Goal	test	is	a	set	of	constraints	specifying	allowable	

combinations	of	values	for	subsets	of	variables

§ Making	use	of	CSP	formulation	allows	for	
optimized	algorithms
§ Typical	example	of	trading	generality	for	utility	(in	this	

case,	speed)

Constraint	Satisfaction	Problems

§ Constraint	satisfaction	problems	(CSPs):
§ A	special	subset	of	search	problems
§ State	is	defined	by	variables	Xi with	values	from	a	

domain	D (sometimes	D depends	on	i)
§ Goal	test	is	a	set	of	constraints	specifying	allowable	

combinations	of	values	for	subsets	of	variables

§ “Factoring”	the	state	space

§ Representing	the	state	space	in	a	
knowledge	representation

CSP	Example:	N-Queens

§ Formulation	1:
§ Variables:
§ Domains:
§ Constraints

CSP	Example:	N-Queens

§ Formulation	2:
§ Variables:

§ Domains:

§ Constraints:

Implicit:

Explicit:

CSP	Example:	Sudoku

§ Variables:
§ Each	(open)	square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way	alldiff for	each	row
9-way	alldiff for	each	column

9-way	alldiff	for	each	region
(or	can	have	a	bunch	
of	pairwise	inequality	
constraints)

Propositional	Logic

§ Variables:
§ Domains:
§ Constraints:

propositional	variables
{T,	F}
logical	formula

CSP	Example:	Map	Coloring

§ Variables:

§ Domains:

§ Constraints:	adjacent	regions	must	have	different	
colors

§ Solutions	are	assignments	satisfying	all	
constraints,	e.g.:

Implicit:

Explicit:

Constraint	Graphs

Constraint	Graphs

§ Binary	CSP:	each	constraint	relates	(at	most)	two	
variables

§ Binary	constraint	graph:	nodes	are	variables,	arcs	
show	constraints

§ General-purpose	CSP	algorithms	use	the	graph	
structure	to	speed	up	search.	E.g.,	Tasmania	is	an	
independent	subproblem!

Example:	Cryptarithmetic

§ Variables:

§ Domains:

§ Constraints:

29

Chinese	Constraint	Network

Soup

Total Cost
< $40

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

Real-World	CSPs

§ Assignment	problems:	e.g.,	who	teaches	what	class
§ Timetabling	problems:	e.g.,	which	class	is	offered	when	and	where?
§ Hardware	configuration
§ Gate	assignment	in	airports
§ Space	Shuttle	Repair
§ Transportation	scheduling
§ Factory	scheduling
§ …	lots	more!

Example:	The	Waltz	Algorithm

§ The	Waltz	algorithm	is	for	interpreting	
line	drawings	of	solid	polyhedra as	3D	
objects

§ An	early	example	of	an	AI	computation	
posed	as	a	CSP	

?

Waltz	on	Simple	Scenes

§ Assume	all	objects:
§ Have	no	shadows	or	cracks
§ Three-faced	vertices
§ “General	position”:	no	junctions	change	with	
small	movements	of	the	eye.

§ Then	each	line	on	image	is	one	of	the	
following:
§ Boundary	line	(edge	of	an	object)	(>)	with	right	
hand	of	arrow	denoting	“solid”	and	left	hand	
denoting	“space”

§ Interior	convex	edge	(+)
§ Interior	concave	edge	(-)

Legal	Junctions

§ Only	certain	junctions	are	physically	possible
§ How	can	we	formulate	a	CSP	to	label	an	image?
§ Variables:	edges
§ Domains:	>,	<,	+,	-
§ Constraints:	legal	junction	types

Slight	Problem:	Local	vs Global	Consistency

37

Varieties	of	CSPs

Varieties	of	CSP	Variables

§ Discrete	Variables
§ Finite	domains

§ Size	d means	O(dn) complete	assignments
§ E.g.,	Boolean	CSPs,	including	Boolean	satisfiability (NP-
complete)

§ Infinite	domains	(integers,	strings,	etc.)
§ E.g.,	job	scheduling,	variables	are	start/end	times	for	each	job
§ Linear	constraints	solvable,	nonlinear	undecidable

§ Continuous	variables
§ E.g.,	start/end	times	for	Hubble	Telescope	observations
§ Linear	constraints	solvable	in	polynomial	time	by	linear	

program	methods	(see	CSE	521	for	a	bit	of	LP	theory)

Varieties	of	CSP	Constraints

§ Varieties	of	Constraints
§ Unary	constraints	involve	a	single	variable	(equivalent	to	

reducing	domains),	e.g.:

§ Binary	constraints	involve	pairs	of	variables,	e.g.:

§ Higher-order	constraints	involve	3	or	more	variables:
e.g.,	cryptarithmetic column	constraints

§ Preferences	(soft	constraints):
§ E.g.,	red	is	better	than	green
§ Often	representable by	a	cost	for	each	variable	assignment
§ Gives	constrained	optimization	problems
§ (We’ll	ignore	these	until	we	get	to	Bayes’	nets)

Solving	CSPs

CSP	as	Search

§ States
§ Operators
§ Initial	State
§ Goal	State

Standard	Depth	First	Search

Standard	Search	Formulation

§ Standard	search	formulation	of	CSPs

§ States	defined	by	the	values	assigned	
so	far	(partial	assignments)
§ Initial	state:	the	empty	assignment,	{}
§ Successor	function:	assign	a	value	to	an	
unassigned	variable

§ Goal	test:	the	current	assignment	is	
complete	and	satisfies	all	constraints

§ We’ll	start	with	the	straightforward,	
naïve	approach,	then	improve	it

Backtracking	Search

Backtracking	Search

§ Backtracking	search	is	the	basic	uninformed	algorithm	for	solving	CSPs

§ Idea	1:	One	variable	at	a	time
§ Variable	assignments	are	commutative,	so	fix	ordering
§ I.e.,	[WA	=	red	then	NT	=	green]	same	as	[NT	=	green	then	WA	=	red]
§ Only	need	to	consider	assignments	to	a	single	variable	at	each	step

§ Idea	2:	Check	constraints	as	you	go
§ I.e.	consider	only	values	which	do	not	conflict	previous	assignments
§ Might	have	to	do	some	computation	to	check	the	constraints
§ “Incremental	goal	test”

§ Depth-first	search	with	these	two	improvements
is	called	backtracking	search

§ Can	solve	n-queens	for	n	» 25

Backtracking	Example

Backtracking	Search

§ What	are	the	choice	points?

[Demo:	coloring	-- backtracking]

Backtracking	Search

§ Kind	of	depth	first	search
§ Is	it	complete?

Improving	Backtracking

§ General-purpose	ideas	give	huge	gains	in	speed

§ Ordering:
§ Which	variable	should	be	assigned	next?
§ In	what	order	should	its	values	be	tried?

§ Filtering:	Can	we	detect	inevitable	failure	early?

§ Structure:	Can	we	exploit	the	problem	structure?

Filtering

§ Filtering:	Keep	track	of	domains	for	unassigned	variables	and	cross	off	bad	options
§ Forward	checking:	Cross	off	values	that	violate	a	constraint	when	added	to	the	existing	

assignment

Filtering:	Forward	Checking

WA
SA
NT Q

NSW
V

[Demo:	coloring	-- forward	checking]

Filtering:	Constraint	Propagation

§ Forward	checking	only	propagates	information	from	assigned	to	unassigned
§ It	doesn't	catch	when	two	unassigned	variables	have	no	consistent	assignment:

§ NT	and	SA	cannot	both	be	blue!
§ Why	didn’t	we	detect	this	yet?
§ Constraint	propagation:	reason	from	constraint	to	constraint

WA SA

NT Q

NSW

V

Consistency	of	a	Single	Arc

§ An	arc	X	® Y	is	consistent iff for	every	x	in	the	tail	there	is	some	y	in	the	head	which	
could	be	assigned	without	violating	a	constraint

§ Forward	checking:	Enforcing	consistency	of	arcs	pointing	to	each	new	assignment

Delete	from	the	tail!

WA SA

NT Q

NSW

V

Arc	Consistency	of	an	Entire	CSP
§ A	simple	form	of	propagation	makes	sure	all	arcs	are	consistent:

§ Important:	If	X	loses	a	value,	neighbors	of	X	need	to	be	rechecked!
§ Arc	consistency	detects	failure	earlier than	forward	checking
§ Can	be	run	as	a	preprocessor	or after	each	assignment	
§ What’s	the	downside of	enforcing	arc	consistency?

WA SA
NT Q

NSW

V

AC-3	algorithm	for	Arc	Consistency

§ Runtime:	O(n2d3),	can	be	reduced	to	O(n2d2)
§ …	but	detecting	all possible	future	problems	is	NP-hard	– why?

[Demo:	CSP	applet	(made	available	by	aispace.org)	-- n-queens]

Limitations	of	Arc	Consistency

§ After	enforcing	arc	consistency:
§ Can	have	one	solution	left
§ Can	have	multiple	solutions	left
§ Can	have	no	solutions	left	

(and	not	know	it)

§ Even	with	Arc	Consistency	you	still	need	
backtracking	search!
§ Could	run	at	even	step	of	that	search
§ Usually	better	to	run	it	once,	before	search

What	went	
wrong	here?

Video	of	Demo	Coloring	– Backtracking	with	Forward	Checking	–
Complex	Graph

Video	of	Demo	Coloring	– Backtracking	with	Arc	Consistency	–
Complex	Graph

K-Consistency

K-Consistency
§ Increasing	degrees	of	consistency

§ 1-Consistency	(Node	Consistency):	Each	single	variable’s	domain	has	a	value	
which	meets	that	variables	unary	constraints

§ 2-Consistency	(Arc	Consistency):	For	each	pair	of	variables,	any	consistent	
assignment	to	one	can	be	extended	to	the	other

§ 3-Consistency	(Path	Consistency):	For	every	set	of	3	vars,	any	consistent	
assignment	to	2	of	the	variables	can	be	extended	to	the	third	var

§ K-Consistency:	For	each	k	nodes,	any	consistent	assignment	to	k-1	can	be	
extended	to	the	kth node.

§ Higher	k	more	expensive	to	compute

§ (You	need	to	know	the	algorithm	for	k=2	case:	arc	consistency)

Strong	K-Consistency

§ Strong	k-consistency:	also	k-1,	k-2,	…	1	consistent

§ Claim:	strong	n-consistency	means	we	can	solve	without	backtracking!

§ Why?
§ Choose	any	assignment	to	any	variable
§ Choose	a	new	variable
§ By	2-consistency,	there	is	a	choice	consistent	with	the	first
§ Choose	a	new	variable
§ By	3-consistency,	there	is	a	choice	consistent	with	the	first	2
§ …

Ordering

Backtracking	Search

Ordering:	Minimum	Remaining	Values

§ Variable	Ordering:	Minimum	remaining	values	(MRV):
§ Choose	the	variable	with	the	fewest	legal	left	values	in	its	domain

§ Why	min	rather	than	max?
§ Also	called	“most	constrained	variable”
§ “Fail-fast”	ordering

§ Tie-breaker	among	MRV	variables
§ What	is	the	very	first	state	to	color?	(All	have	3	values	remaining.)

§ Maximum	degree	heuristic:
§ Choose	the	variable	participating	in	the	most	constraints	on	remaining	
variables

§ Why	most	rather	than	fewest	constraints?

Ordering:	Maximum	Degree

Ordering:	Least	Constraining	Value

§ Value	Ordering:	Least	Constraining	Value
§ Given	a	choice	of	variable,	choose	the	least	
constraining	value

§ I.e.,	the	one	that	rules	out	the	fewest	values	in	
the	remaining	variables

§ Note	that	it	may	take	some	computation	to	
determine	this!		(E.g.,	rerunning	filtering)

§ Why	least	rather	than	most?

§ Combining	these	ordering	ideas	makes
1000	queens	feasible

Rationale	for	MRV,	MD,	LCV

§ We	want	to	enter	the	most	promising	branch,	but	we	also	want	
to	detect	failure	quickly

§ MRV+MD:
§ Choose	the	variable	that	is	most	likely	to	cause	failure
§ It	must	be	assigned	at	some	point,	so	if	it	is	doomed	to	fail,	better	to	
find	out	soon

§ LCV:
§ We	hope	our	early	value	choices	do	not	doom	us	to	failure
§ Choose	the	value	that	is	most	likely	to	succeed

Trapped

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

75

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables?

Trapped

76

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables? X1, … X6
Domains {P, G, E}

§ Pacman is	trapped!	He	is	surrounded	by	mysterious	corridors,	each	
of	which	leads	to	either	a	pit	(P),	a	ghost(G),	or	an	exit	(E).	In	order	to	
escape,	he	needs	to	figure	out	which	corridors,	if	any,	lead	to	an	exit	
and	freedom,	rather	than	the	certain	doom	of	a	pit	or	a	ghost.	

§ The	one	sign	of	what	lies	behind	the	corridors	is	the	wind:	a	pit	
produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	breeze	
(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	Unfortunately,	
Pacman cannot	measure	the	strength	of	the	breeze	at	a	specific	
corridor.	Instead,	he	can	stand	between	two	adjacent	corridors	and	
feel	the	max	of	the	two	breezes.	For	example,	if	he	stands	between	a	
pit	and	an	exit	he	will	sense	a	strong	(S)	breeze,	while	if	he	stands	
between	an	exit	and	a	ghost,	he	will	sense	a	weak	(W)	breeze.	The	
measurements	for	all	intersections	are	shown	in	the	figure	below.	

§ Also,	while	the	total	number	of	exits	might	be	zero,	one,	or	more,	
Pacman	knows	that	two	neighboring	squares	will	not	both	be	exits.

Trapped

§ A	pit	produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	
breeze	(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.	

§ Pacman	feels	the	max	of	the	two	breezes.	
§ the	total	number	of	exits	might	be	zero,	one,	or	more,	
§ two	neighboring	squares	will	not	both	be	exits.

77

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Variables? X1, … X6
Domains {P, G, E}

Constraints?

Trapped

§ A	pit	produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	
breeze	(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.

§ Pacman feels	the	max	of	the	two	breezes.	
§ the	total	number	of	exits	might	be	zero,	one,	or	more,	
§ two	neighboring	squares	will	not	both	be	exits.

78

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Constraints?

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

X1 = P or X2= P

Xi = E nand Xi+1|7 = E

X3 = E or X4= E
X5 = P or X6= PX2 = E or X3= E
X4 = P or X5= P

X6 = P or X1= P

Also! X2 =/= P
X3 =/= P
X4 =/= P

Trapped

§ A	pit	produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	
breeze	(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.

§ Pacman feels	the	max	of	the	two	breezes.	
§ the	total	number	of	exits	might	be	zero,	one,	or	more,	
§ two	neighboring	squares	will	not	both	be	exits.

79

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Arc consistent?

Constraints?

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

X1 = P or X2= P

Xi = E nand Xi+1|7 = E

X3 = E or X4= E
X5 = P or X6= PX2 = E or X3= E
X4 = P or X5= P

X6 = P or X1= P

Also! X2 =/= P
X3 =/= P
X4 =/= P

Trapped

§ A	pit	produces	a	strong	breeze	(S)	and	an	exit	produces	a	weak	
breeze	(W),	while	a	ghost	doesn’t	produce	any	breeze	at	all.

§ Pacman feels	the	max	of	the	two	breezes.	
§ the	total	number	of	exits	might	be	zero,	one,	or	more,	
§ two	neighboring	squares	will	not	both	be	exits.

80

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

�

�

�

�

�

�

�

�	

	

�

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

Arc consistent?

Constraints?

2 CSPs: Trapped Pacman

Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost
(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom,
rather than the certain doom of a pit or a ghost.

The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit
produces a weak breeze (W), while a ghost doesn’t produce any breeze at all. Unfortunately, Pacman cannot
measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors
and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong
(S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements
for all intersections are shown in the figure below.

Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares
will not both be exits.

Pacman models this problem using variables Xi for each corridor i and domains P, G, and E.

1. State the binary and/or unary constraints for this CSP (either implicitly or explicitly).

2. Cross out the values from the domains of the variables that will be deleted in enforcing arc consistency.

X1 P G E

X2 P G E

X3 P G E

X4 P G E

X5 P G E

X6 P G E

2

MRV heuristic?
X1 = P or X2= P

Xi = E nand Xi+1|7 = E

X3 = E or X4= E
X5 = P or X6= PX2 = E or X3= E
X4 = P or X5= P

X6 = P or X1= P

Also! X2 =/= P
X3 =/= P
X4 =/= P

Structure

Problem	Structure

§ Extreme	case:	independent	subproblems
§ Example:	Tasmania	and	mainland	do	not	interact

§ Independent	subproblems are	identifiable	as	
connected	components	of	constraint	graph

§ Suppose	a	graph	of	n	variables	can	be	broken	into	
subproblems of	only	c	variables:
§ Worst-case	solution	cost	is	O((n/c)(dc)),	linear	in	n
§ E.g.,	n	=	80,	d	=	2,	c	=20
§ 280 =	4	billion	years	at	10	million	nodes/sec
§ (4)(220)	=	0.4	seconds	at	10	million	nodes/sec

Tree-Structured	CSPs

§ Theorem:	if	the	constraint	graph	has	no	loops,	the	CSP	can	be	solved	in	O(n	d2)	time
§ Compare	to	general	CSPs,	where	worst-case	time	is	O(dn)

§ This	property	also	applies	to	probabilistic	reasoning	(later):	an	example	of	the	relation	
between	syntactic	restrictions	and	the	complexity	of	reasoning

Tree-Structured	CSPs
§ Algorithm	for	tree-structured	CSPs:

§ Order:	Choose	a	root	variable,	order	variables	so	that	parents	precede	children

§ Remove	backward:	For	i =	n	:	2,	apply	RemoveInconsistent(Parent(Xi),Xi)
§ Assign	forward:	For	i =	1	:	n,	assign	Xi consistently	with	Parent(Xi)

§ Runtime:	O(n	d2)		(why?)

Tree-Structured	CSPs

§ Claim	1:	After	backward	pass,	all	root-to-leaf	arcs	are	consistent
§ Proof:	Each	X®Y	was	made	consistent	at	one	point	and	Y’s	domain	could	not	have	

been	reduced	thereafter	(because	Y’s	children	were	processed	before	Y)

§ Claim	2:	If	root-to-leaf	arcs	are	consistent,	forward	assignment	will	not	backtrack
§ Proof:	Induction	on	position

§ Why	doesn’t	this	algorithm	work	with	cycles	in	the	constraint	graph?

§ Note:	we’ll	see	this	basic	idea	again	with	Bayes’	nets

Connection	to	Bayes	Nets

Bayes	Net	Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

More	Complex	Bayes’ Net:	Auto	Diagnosis

Hidden	Markov	Model	(Tree	Structured)

§ An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Emissions:

P(R1)
0.6

Rt-1
t
f

P(Rt | Rt-1)
0.7
0.1

Rt
t
f

P(Ut | Rt)
0.9
0.2

Forward	Algorithm

Umbr1	=	T Umbr2	=	T

Rain0 Rain1 Rain2

B(x0=r)	=	0.5

P(R1)
0.5

Rt-1
t
f

P(Rt | Rt-1)
0.8
0.6

Rt
t
f

P(Ut | Rt)
0.9
0.3

B

0(X
t+1) =

X

xt

P (X 0|x
t

)B(x
t

)

B’(x1=r) = 0.7

B(x1=r)	=	0.875

B’(x2=r) = P(x2=r | x1=r)*0.875 + P(x2=r | x1=s)*0.125
= 0.8*0.875 + 0.6*0.125
= 0.775

B(x1=r)	∝ 0.9	*	0.775	=	0.6975
B(x1=s)	∝ 0.3	*	0.225	=	0.0675	

Divide	by	0.765	to	normalize
B(x1=r)	=	0.912

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

More	Complex	HMM	Inference

§ Forward	Backward
§ Computes	marginal	probabilities	of	all hidden	states	given	sequence	of	
observations

P(xt = value)

More	Complex	HMM	Inference

§ Forward	Backward
§ Computes	marginal	probabilities of	all	hidden	states	given	sequence	of	
observations

§ Viterbi
§ Computes	most	likely	sequence	of	states	

valuevaluevaluevalue value

Improving	Structure

Nearly	Tree-Structured	CSPs

§ Conditioning:	instantiate	a	variable,	prune	its	neighbors'	domains

§ Cutset conditioning:	instantiate	(in	all	ways)	a	set	of	variables	such	that	
the	remaining	constraint	graph	is	a	tree

§ Cutset size	c	gives	runtime	O((dc)	(n-c)	d2),	very	fast	for	small	c

Cutset Conditioning

SA

SA SA SA

Instantiate	the	cutset
(all	possible	ways)

Compute	residual	CSP	
for	each	assignment

Solve	the	residual	CSPs	
(tree	structured)

Choose	a	cutset

Cutset Quiz

§ Find	the	smallest	cutset for	the	graph	below.

Local	Search	for	CSPs

Iterative	Algorithms	for	CSPs

§ Local	search	methods	typically	work	with	“complete”	states,	i.e.,	all	variables	assigned

§ To	apply	to	CSPs:
§ Take	an	assignment	with	unsatisfied	constraints
§ Operators	reassign	variable	values
§ No	fringe!		Live	on	the	edge.

§ Algorithm:	While	not	solved,
§ Variable	selection:	randomly	select	any	conflicted	variable
§ Value	selection:	min-conflicts	heuristic:

§ Choose	a	value	that	violates	the	fewest	constraints
§ I.e.,	hill	climb	with	h(n)	=	total	number	of	violated	constraints

Example:	4-Queens

§ States:	4	queens	in	4	columns	(44 =	256	states)
§ Operators:	move	queen	in	column
§ Goal	test:	no	attacks
§ Evaluation:	c(n)	=	number	of	attacks

[Demo:	n-queens	– iterative	improvement	(L5D1)]
[Demo:	coloring	– iterative	improvement]

Performance	of	Min-Conflicts

§ Given	random	initial	state,	can	solve	n-queens	in	almost	constant	time	for	arbitrary	
n	with	high	probability	(e.g.,	n	=	10,000,000)!

§ The	same	appears	to	be	true	for	any	randomly-generated	CSP	except in	a	narrow	
range	of	the	ratio

Summary:	CSPs

§ CSPs	are	a	special	kind	of	search	problem:
§ States	are	partial	assignments
§ Goal	test	defined	by	constraints

§ Basic	solution:	backtracking	search

§ Speed-ups:
§ Ordering
§ Filtering
§ Structure	(cutset conditioning)

§ Iterative	min-conflicts	is	often	effective	in	practice

