CSE 573: Artificial Intelligence

Constraint Satisfaction Problems Factored (aka Structured) Search

[With many slides by Dan Klein and Pieter Abbeel (UC Berkeley) available at http://ai.berkeley.edu.]

Final Presentations

- 21 groups / 40 people / 110 min
 - Minus transfers & tournament replay
- Presentations (with questions)
 - One person groups2.5 min
 - Two person groups 4.5 min
 - Three person groups 6.5 min
- Everyone should speak (unless OOT)
- Rehearse
- Add URL for slides to g-doc
 - https://docs.google.com/spreadsheets/d/1Qt5BW0DkSAg6Q4MOM98jSSwjR2wTZpi5i01XdT0X-fs/edit#gid=0

Final report

- Default project ~2 pages
- Other projects ~6 pages
 - Experiments
 - Lessons learned
 - http://courses.cs.washington.edu/courses/cse573/17wi/reports.html

3

- Everyone
 - See note on appendices dynamics & external code

AI Topics

Search

- Problem spaces
- BFS, DFS, UCS, A* (tree and graph), local search
- Completeness and Optimality
- Heuristics: admissibility and consistency; pattern DBs
- CSPs
 - Constraint graphs, backtracking search
 - Forward checking, AC3 constraint propagation, ordering heuristics
- Games
 - Minimax, Alpha-beta pruning,
 - Expectimax
 - Evaluation Functions
- MDPs
 - Bellman equations
 - Value iteration, policy iteration

- Reinforcement Learning
 - Exploration vs Exploitation
 - Model-based vs. model-free
 - Q-learning
 - Linear value function approx.
- Hidden Markov Models
 - Markov chains, DBNs
 - Forward algorithm
 - Particle Filters
- POMDPs
 - Belief space
 - Piecewise linear approximation to value fun
- Beneficial AI
- Bayesian Networks
 - Basic definition, independence (d-sep)
 - Variable elimination
 - Sampling (rejection, importance)
- Learning
 - BN parameters with complete data
 - Search thru space of BN structures
 - Expostation maximization

What is intelligence?

- (bounded) Rationality
 - Agent has a performance measure to optimize
 - Given its state of knowledge
 - Choose optimal action
 - With limited computational resources
- Human-like intelligence/behavior

State-Space Search

- X as a search problem
 - states, actions, transitions, cost, goal-test
- Types of search
 - uninformed systematic: often slow
 - DFS, BFS, uniform-cost, iterative deepening
 - Heuristic-guided: better
 - Greedy best first, A*
 - Relaxation leads to heuristics
 - Local: fast, fewer guarantees; often local optimal
 - Hill climbing and variations
 - Simulated Annealing: global optimal
 - (Local) Beam Search

1 2 3 4 5 6 7 8 Goal State

Which Algorithm?

• A*, Manhattan Heuristic:

Adversarial Search

Adversarial Search

- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
 - alpha-beta pruning
- Utility function for partial search
 - Learning utility functions by playing with itself
- Openings/Endgame databases

Policy Iteration

- Let i =0
- Initialize π_i(s) to random actions
- Repeat
 - Step 1: Policy evaluation:
 - Initialize k=0; Forall s, $V_0^{\pi}(s) = 0$
 - Repeat until V^π converges

• For each state s,
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Let k += 1
- Step 2: Policy improvement:

• For each state, s,
$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

- If $\pi_i == \pi_{i+1}$ then it's optimal; return it.
- Else let i += 1

Example

Initialize π_0 to "always go right"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

Yes! i += 1

Example

 π_1 says "always go up"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

No! We have the optimal policy

Reinforcement Learning

- Forall s, a
 - Initialize Q(s, a) = 0
- Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: transition =(s, a, r, s') Do update:

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$

 $Q(s,a) \leftarrow Q(s,a) + \alpha$ [difference]

Approximate Q-Learning

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

- Forall s, a
 - Initialize w_i= 0
- Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: transition =(s, a, r, s') Do updates:

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$ $w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a)$

- Interpretation as search
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the active features

Approximate Q-Learning

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

Q-learning with linear Q-functions:

transition = (s, a, r, s') $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

Old way: Exact Q's

Now: Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were *active*: *disprefer all states with that state's features*

What is Search For?

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Assume little about problem structure
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are *structured* (factored) identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Making use of CSP formulation allows for optimized algorithms
 - Typical example of trading generality for utility (in this case, speed)

Constraint Satisfaction Problems

- "Factoring" the state space
- Representing the state space in a knowledge representation
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

CSP Example: N-Queens

Is there a queen at X_{ij}? ■ Formulation 1:

- Variables: X_{ij}
- Domains: {0,1}
- Constraints

$$\begin{aligned} \forall i, j, k \ (X_{ij}, X_{ik}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{kj}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) &\in \{(0, 0), (0, 1), (1, 0)\} \\ \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) &\in \{(0, 0), (0, 1), (1, 0)\} \end{aligned}$$

$$\sum_{i,j} X_{ij} = N$$

CSP Example: N-Queens

Constraints:

Implicit: $\forall i, j \text{ non-threatening}(Q_i, Q_j)$ Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

CSP Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:

9-way alldiff for each column9-way alldiff for each row9-way alldiff for each region(or can have a bunch of pairwise inequality constraints)

Propositional Logic

$$((p \leftrightarrow q) \land r) \lor (p \land q \land \sim r)$$

- Variables: propositional variables
- Domains: {T, F}
- Constraints: logical formula

CSP Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: D = {red, green, blue}
- Constraints: adjacent regions must have different colors

```
Implicit: WA \neq NT
```

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

Solutions are assignments satisfying all constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables:
 - $F T U W R O X_1 X_2 X_3$
- Domains:

 $\{0,1,2,3,4,5,6,7,8,9\}$

Constraints:

 $\operatorname{alldiff}(F, T, U, W, R, O)$

 $O + O = R + 10 \cdot X_1$

• • •

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Space Shuttle Repair
- Transportation scheduling
- Factory scheduling
- In lots more!

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Waltz on Simple Scenes

Assume all objects:

- Have no shadows or cracks
- Three-faced vertices
- "General position": no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (>) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: edges
- Domains: >, <, +, -</p>
- **Constraints:** legal junction types

Slight Problem: Local vs Global Consistency

37

Varieties of CSPs

Varieties of CSP Variables

- Discrete Variables
 - Finite domains
 - Size *d* means O(*dⁿ*) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

Continuous variables

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

Binary constraints involve pairs of variables, e.g.:

 $SA \neq WA$

- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Solving CSPs

CSP as Search

- States
- Operators
- Initial State
- Goal State

Standard Depth First Search

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called *backtracking search*
- Can solve n-queens for $n \approx 25$

Backtracking Example

Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING(\{ }, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp)
if result \neq failure then return result
remove {var = value} from assignment
return failure
```

What are the choice points?

[Demo: coloring -- backtracking]

Backtracking Search

- Kind of depth first search
- Is it complete?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

- Forward checking only propagates information from assigned to unassigned
- It doesn't catch when two unassigned variables have no consistent assignment:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of a Single Arc

An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure *earlier* than forward checking
- Can be run as a preprocessor *or* after each assignment
- What's the *downside* of enforcing arc consistency?

AC-3 algorithm for Arc Consistency

```
function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then

for each X_k in NEIGHBORS[X_i] do

add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds

removed \leftarrow false

for each x in DOMAIN[X_i] do

if no value y in DOMAIN[X_j] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j

then delete x from DOMAIN[X_i]; removed \leftarrow true

return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting *all* possible future problems is NP-hard why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Even with Arc Consistency you still need backtracking search!
 - Could run at even step of that search
 - Usually better to run it once, before search

What went wrong here?

Video of Demo Coloring – Backtracking with Forward Checking – Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency – Complex Graph

K-Consistency

K-Consistency

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single variable's domain has a value which meets that variables unary constraints
 - 2-Consistency (Arc Consistency): For each pair of variables, any consistent assignment to one can be extended to the other
 - 3-Consistency (Path Consistency): For every set of 3 vars, any consistent assignment to 2 of the variables can be extended to the third var
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the algorithm for k=2 case: arc consistency)

Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!

Why?

- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2
- ...

Ordering

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment $var \leftarrow SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)$ for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do if value is consistent with assignment given CONSTRAINTS[csp] then add {var = value} to assignment result \leftarrow RECURSIVE-BACKTRACKING(assignment, csp) if result \neq failure then return result remove {var = value} from assignment return failure

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Maximum Degree

- Tie-breaker among MRV variables
 - What is the very first state to color? (All have 3 values remaining.)
- Maximum degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Rationale for MRV, MD, LCV

- We want to enter the most promising branch, but we also want to detect failure quickly
- MRV+MD:
 - Choose the variable that is most likely to cause failure
 - It must be assigned at some point, so if it is doomed to fail, better to find out soon
- LCV:
 - We hope our early value choices do not doom us to failure
 - Choose the value that is most likely to succeed

- Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.
- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all. Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements for all intersections are shown in the figure below.
- Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

Variables?

- Pacman is trapped! He is surrounded by mysterious corridors, each of which leads to either a pit (P), a ghost(G), or an exit (E). In order to escape, he needs to figure out which corridors, if any, lead to an exit and freedom, rather than the certain doom of a pit or a ghost.
- The one sign of what lies behind the corridors is the wind: a pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all. Unfortunately, Pacman cannot measure the strength of the breeze at a specific corridor. Instead, he can stand between two adjacent corridors and feel the max of the two breezes. For example, if he stands between a pit and an exit he will sense a strong (S) breeze, while if he stands between an exit and a ghost, he will sense a weak (W) breeze. The measurements for all intersections are shown in the figure below.
- Also, while the total number of exits might be zero, one, or more, Pacman knows that two neighboring squares will not both be exits.

Variables? $X_1, \dots X_6$ Domains {P, G, E}

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

Variables? $X_1, \dots X_6$ Domains {P, G, E}

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

X ₁ = P	or $X_2 =$	Р	$X_4 = P$	or	X ₅ = P
X ₂ = E	or X ₃ =	E	$X_5 = P$	or	X ₆ = P
X ₃ = E	or $X_4 =$	E	$X_6 = P$	or	X ₁ = P

$$X_i = E$$
 nand $X_{i+1|7} = E$

X_1	Р	G	Е
X_2	Р	G	E
X_3	Р	G	Е
X_4	Р	G	Е
X_5	Р	G	Е
X_6	Р	G	Е

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

X ₁ = P	or $X_2 = P$	$X_4 = P$	or	X ₅ = P
X ₂ = E	or X ₃ = E	$X_5 = P$	or	X ₆ = P
X ₃ = E	or $X_4 = E$	$X_6 = P$	or	X ₁ = P

$$X_i = E$$
 nand $X_{i+1|7} = E$

Arc consistent?

X_1	Р	G	Е
X_2	Р	G	Е
X_3	Р	G	Е
X_4	Р	G	Е
X_5	Р	G	Е
X_6	Р	G	E

79

- A pit produces a strong breeze (S) and an exit produces a weak breeze (W), while a ghost doesn't produce any breeze at all.
- Pacman feels the max of the two breezes.
- the total number of exits might be zero, one, or more,
- two neighboring squares will not both be exits.

Constraints?

X ₁ = P	or	X ₂ = P	$X_4 = P$	or	X ₅ = P
X ₂ = E	or	X ₃ = E	$X_5 = P$	or	X ₆ = P
X ₃ = E	or	X ₄ = E	$X_6 = P$	or	X ₁ = P

 $X_i = E$ nand $X_{i+1|7} = E$

or
$$X_6 = P$$

or $X_1 = P$
Also! $X_2 = P$
 $X_3 = P$
 $X_4 = P$

MRV heuristic?

Arc consistent?

X_1	Р	Å	Z
X_2	Y	G	Ε
X_3	X	G	Е
X_4	Y	G	Ε
X_5	Р	G	Z
X_6	Р	G	Е

Structure

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Connection to Bayes Nets

Bayes Net Example: Alarm Network

В	E	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

More Complex Bayes' Net: Auto Diagnosis

Hidden Markov Model (Tree Structured)

An HMM is defined by:

- Initial distribution:
- Transitions:
- Emissions:

 $P(X_1) \\ P(X_t | X_{t-1}) \\ P(E | X)$

Forward Algorithm

More Complex HMM Inference

- Forward Backward
 - Computes marginal probabilities of *all* hidden states given sequence of observations

More Complex HMM Inference

- Forward Backward
 - Computes marginal *probabilities* of all hidden states given sequence of observations
- Viterbi
 - Computes most likely sequence of states

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Conditioning

Cutset Quiz

• Find the smallest cutset for the graph below.

Local Search for CSPs

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No fringe! Live on the edge.
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any *randomly-generated* CSP *except* in a narrow range of the ratio

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
 - Ordering
 - Filtering
 - Structure (cutset conditioning)
- Iterative min-conflicts is often effective in practice

