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Potential	Benefits	of	AI

§ Transportation
§1.3	M	people	die	in	road	crashes	/	year				
§An	additional	20-50 million	are	injured	or	disabled.	
§Average	US	commute	50	min	/	day

§Medicine
§250k	US	deaths	/	year	due	to	medical	error

§ Education
§ Intelligent	tutoring	systems,	computer-aided	teaching
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• asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
• https://www.washingtonpost.com/news/to-your-health/wp/2016/05/03/researchers-medical-errors-now-third-

leading-cause-of-death-in-united-states/?utm_term=.49f29cb6dae9



Will	AI	Destroy	the	World?

“Success	in	creating	AI	would	be	the	biggest	event	
in	human	history… Unfortunately,	it	might	also	be	
the	last”	… “[AI]	could	spell	the	end	of	the	human	
race.”– Stephen	Hawking
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How	Does	this	Story	End?

“With	artificial	intelligence	we	are	summoning	the	
demon.”	– Bill	Gates	
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An	Intelligence	Explosion?

“Before	the	prospect	of	an	intelligence	explosion,	we	humans	are	
like	small	children	playing	with	a	bomb” −	Nick	Bostom
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“Once	machines	reach	a	certain	level	of	
intelligence,	they’ll	be	able	to	work	on	AI	
just	like	we	do	and	improve	their	own	
capabilities—redesign	their	own	
hardware	and	so	on—and	their	
intelligence	will	zoom	off	the	charts.”
−	Stuart	Russell



Superhuman	AI	&	Intelligence	Explosions

§When	will	computers	have	superhuman	
capabilities?

§Now.
§Multiplication
§ Spell	checking
§Chess,	Go

§Many	more	abilities	to	come
9



AI	Systems	are	Idiot	Savants

§ Super-human	here			&			super-stupid	there

§ Just	because	AI	gains	one	superhuman	skill… Doesn’t	
mean	it	is	suddenly	good	at	everything
And	certainly	not	unless	we	give	it	experience at	everything

§ AI	systems	will	be	spotty	for	a	very	long	time
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Example:	SQuAD

Rajpurkat et al. “SQuAD: 100,000+ Questions for Machine Comprehension of Text,” https://arxiv.org/pdf/1606.05250.pdf
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Impressive	Results

Seo et al. “Bidirectional Attention Flow for Machine Comprehension” arXiv:1611.01603v5



It’s	a	Long	Way	to	General	Intelligence

§ h 13



Impressive	Results
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Microsoft	
CaptionBot

I think it's a brown horse grazing in front of a house.



It’s	a	Long	Way	to	General	Intelligence
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Microsoft	
CaptionBot

I am not really confident, but I think it's a woman 
standing talking on a cell phone and she seems 😐.



AI	Systems	are	Idiot	Savants

§ Super-human	here			&			super-stupid	there

§No	common	sense
§No	long	term	autonomy

§ Slower	and	more	degraded	as	learning	increases

§No	goals	besides	those	we	give	them

“No	machines	with	self-sustaining	long-term	goals	and	
intent	have	been	developed,	nor	are	they	likely	to	be	
developed	in	the	near	future.”		*

16
* P. Stone et al. "Artificial Intelligence and Life in 2030." One Hundred Year Study on Artificial
Intelligence: Report of the 2015-2016 Study Panel. http://ai100.stanford.edu/2016-report.



Terminator	/	Skynet

“Could	you	prove	that	your	
systems	can’t	ever,	no	matter	
how	smart	they	are,	
overwrite	their	original	goals	
as	set	by	the	humans?”	
−	Stuart	Russell
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It’s	the	Wrong	Question
§ Very	unlikely	that	an	AI	will	wake	up	and	decide	to	kill	us

But…
§ Quite	likely	that	an	AI	will	do	something	unintended
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Sorcerer’s	Apprentice

Tired	of	fetching water	by	pail,	the	apprentice	
enchants	a	broom to	do	the	work	for	him	–
using	magic	in	which	he	is	not	yet	fully	trained.	
The	floor	is	soon	awash	with	water,	and	
the	apprentice	realizes	that	he	cannot	
stop	the	broom	because	he	does	not	
know	how.

23



Script	vs.	Search-Based	Agents

24

Now Soon



Unpredictability
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Ok Google, how 
much of my Drive 
storage is used for 
my photo collection?

None, Dave!
I just executed rm *

(It was easier than 
counting file sizes)



Brains	Don’t	Kill

It’s	an	agent’s	effectors that	cause	harm

26

Intelligence

Effector-bility

• 2012, Knight Capital lost $440 
million when a new automated 
trading system executed 4 million 
trades on 154 stocks in just forty-
five minutes. 

• 2003, an error in General 
Electric’s power monitoring 
software led to a massive 
blackout, depriving 50 million 
people of power.

AlphaGo



Correlation	Confuses	the	Two

With	increasing	intelligence,	comes	our	desire	to	
adorn	an	agent	with	strong	effectors	

27

Intelligence

Effector-bility



Physically-Complete	Effectors

§ Roomba	effectors	close	to	harmless
§ Bulldozer	blade	∨missile	launcher	… dangerous

§ Some	effectors	are	physically-complete
§They	can	be	used	to	create	other
more	powerful	effectors

§E.g.	the	human	hand
created	tools….
that	were	used	to	create	more	tools…
that	could	be	used	to	create	nuclear	weapons 28



Universal	Subgoals

For	any	primary	goal,	…
These	subgoals increase	likelihood	of	success:

§Stay	alive	
(It’s	hard	to	fetch	the	coffee	if	you’re	dead)

§Get	more	resources

29

-Stuart Russell



Specifying	Utility	Functions	

30

Clean up as much dirt 
as possible!

An optimizing agent will start 
making messes, just so it can 
clean them up.



Specifying	Utility	Functions	
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Clean up as many 
messes as possible, 
but don’t make any 
yourself.

An optimizing agent can 
achieve more reward by 
turning off the lights and 
placing obstacles on the 
floor… hoping that a human 
will make another mess.



Specifying	Utility	Functions	
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Keep the room as 
clean as possible!

An optimizing agent might kill 
the (dirty) pet cat.  Or at least 
lock it out of the house. 
In fact, best would be to lock 
humans out too!



Specifying	Utility	Functions	
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Clean up any messes 
made by others as 
quickly as possible.

There’s no incentive for the ‘bot to 
help master avoid making a mess. 
In fact, it might increase reward by 
causing a human to make a mess 
if it is nearby, since this would 
reduce average cleaning time. 



Specifying	Utility	Functions	

34

Keep the room as 
clean as possible, but 
never commit harm.



Asimov’s	Laws

1. A robot may	not	injure	a	human	being	or,	
through	inaction,	allow	a	human	being	to	come	
to	harm.	

2. A robot must	obey	orders	given	it	by	human	
beings	except	where	such	orders	would	
conflict	with	the	First Law.	

3. A robot must	protect	its	own	existence	as	long	
as	such	protection	does	not	conflict	with	the	
First	or	Second Law.

35

1942



A	Possible	Solution:	Constrained	Autonomy?

Restrict	an	agents	behavior	with	background	
constraints

36

Intelligence

Effector-bility

Harmful behaviors



But	what	is Harmful?

1. A robot may	not	injure a	human	being	or,	
through	inaction,	allow	a	human	being	to	come	
to	harm.	

§Harm	is	hard	to	define
§ It	involves	complex	tradeoffs
§ It’s	different	for	different	people

37



Trusting	AI

§How	can	a	user	teach	a	machine	what’s	harmful?
§How	can	they	know	when	it	really	understands?
§Especially:

§ Explainable	Machine	Learning

38



Human	– Machine	Learning	loop	today

39

HumanModel

Statistics (accuracy)

Feature engineering
Model engineering
More labels

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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20	Newsgroups	subset	–
Atheism	vs	Christianity

94%	accuracy!!!

Predictions	due	to	email	addresses,	names,…

Test	on	recent	
dataset,	

accuracy	only	
57%

Accuracy	problems	- example

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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Desiderata	for	a	good	explanation

• Humans	can	easily	interpret	reasoningInterpretable

• Describes how this model actually behavesFaithful
• Can be used for anyML modelModel agnostic

Definitely	
not	interpretable

Potentially	
interpretable

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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• Humans	can	easily	interpret	reasoningInterpretable
• Describes	how	this	model	actually	behavesFaithful
• Can	be	used	for	anyML	modelModel	agnostic

x

y Learned	
model

Not	faithful	
to	model

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016

Desiderata	for	a	good	explanation

Faithful



LIME	– Key	Ideas
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1. Pick a model class 
interpretable by humans
- Not globally faithful… L

2. Locally approximate global 
(blackbox) model
- Simple model globally bad, 

but locally good

Line,	
shallow	decision	tree,	
sparse	features,	…	

Locally-faithful	simple
decision	boundary		

è
Good	explanation	
for	prediction

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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Using LIME to explain a complex model’s prediction 
for input xi

1. Sample points around xi

2. Use complex model to predict 
labels for each sample

3. Weigh samples according 
to distance to xi

4. Learn new simple model
on weighted samples

5. Use simple model to explain

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016



Explaining	Google’s	Inception	NN

45

P(           )  = 0.21P(             )  = 0.24P(             )  = 0.32

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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Train a neural network to predict wolf v. husky

Only	1	mistake!!!
Do	you	trust	this	model?

How	does	it	distinguish	between	huskies	and	wolves?

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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LIME Explanation for neural network prediction

It’s	a	great	snow	detector…	L

Slide adapted from Marco Ribeiro – see “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” M. Ribeiro, S. 
Singh, C. Guestrin, SIGKDD 2016
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Data	Risk

§Quality	of	ML	Output	Depends	on	Data…
§ Three	Dangers:
§Training	Data	Attacks
§Adversarial	Examples
§Bias	Amplification

51



Attacks	to	Training	Data

52
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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Adversarial	Examples

57%	Panda

53“Explaining	and	harnessing	adversarial	examples,”	I.	Goodfellow,	J.	Shlens &	C.	Szegedy,	ICLR	2015
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parameters
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Data	Risk

§Quality	of	ML	Output	Depends	on	Data…
§ Three	Dangers:
§Training	Data	Attacks
§Adversarial	Examples
§Bias	Amplification

§Existing	training	data	reflects	our	existing	biases
§Training	ML	on	such	data…

56



Racism	in	Search	Engine	Ad	Placement

Searches	of	‘black’	first	names	

Searches	of	‘white’	first	names

57
2013	study		https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2208240

25% more likely to include 
ad for criminal-records 
background check



Automating	Sexism

§ Word	embeddings

§ Word2vec	trained	on	3M	words	from	Google	news	corpus
§ Allows	analogical	reasoning	
§ Used	as	features	in	machine	translation,	etc.,	etc.

man	:	king		↔		woman	:	queen
sister	:	woman	↔		brother	:	man

man	:	computer	programmer	↔		woman	:	homemaker
man	:	doctor	↔	woman	:	nurse

58https://arxiv.org/abs/1607.06520 Illustration credit: Abdullah Khan Zehady, Purdue



“Housecleaning	Robot”

Google image search 
returns…

Not…
59

In fact…



Predicting	Criminal	Conviction	from	Driver	Lic.	Photo

§ Convolutional	neural	network
§ Trained	on	1800	Chinese	drivers	license	photos
§ 90%	accuracy 60https://arxiv.org/pdf/1611.04135.pdf

Convicted
Criminals

Non-
Criminals

(a) Three samples in criminal ID photo set Sc.

(b) Three samples in non-criminal ID photo set Sn

Figure 1. Sample ID photos in our data set.

2. Data preparation

In order to conduct our experiments and draw conclu-
sions with strict control of variables, we collected 1856 ID
photos that satisfy the following criteria: Chinese, male,
between ages of 18 and 55, no facial hair, no facial scars
or other markings, and denote this data set by S. Set S is
divided into two subsets Sn and Sc for non-criminals and
criminals, respectively. Subset Sn contains ID photos of
1126 non-criminals that are acquired from Internet using the
web spider tool; they are from a wide gamut of professions
and social status, including waiters, construction workers,
taxi and truck drivers, real estate agents, doctors, lawyers
and professors; roughly half of the individuals in subset Sn

have university degrees.
Subset Sc contains ID photos of 730 criminals, of which

330 are published as wanted suspects by the ministry of
public security of China and by the departments of public
security for the provinces of Guangdong, Jiangsu, Liaoning,
etc.; the others are provided by a city police department in
China under a confidentiality agreement. We stress that the
criminal face images in Sc are normal ID photos not police
mugshots. Out of the 730 criminals 235 committed violent
crimes including murder, rape, assault, kidnap and robbery;
the remaining 536 are convicted of non-violent crimes, such
as theft, fraud, abuse of trust (corruption), forgery and rack-
eteering. Some sample ID photos in Sc and Sn are dis-
played in Figure 1. The individuals in Sc and Sn are resi-
dents of a very large geographical areas, stretching from the
northeast all the way to the far south of China and including
poor and very rich provinces of the country.

In all selected ID photos, only the region of the face and
upper neck is extracted and the background is removed. All
the extracted faces are normalized in size and aligned into
an 80 ⇥ 80 image. Although all test face images are ID
photos acquired with uniform frontal lighting, we still take

extra measures to neutralize any possible effects of varied
illumination conditions. Only the luminance component of
all color face images is used to factor out the spectrum of
the lighting and the skin color. Moreover, all resulting grey
scale images are normalized to have the same intensity dis-
tribution or the same overall tone production. This is done
by matching the histogram of every input image to the aver-
age histogram for the entire data set of 1856 grey scale face
images.

All ID photos in S are JPEG compressed with QP factor
of 90 or higher. Still we applied JPEG soft decoding tech-
niques [23, 28] to remove small (perceptually transparent)
compression noises; in the process any device-dependent,
signal-level signatures are destroyed as well.

3. Validity of Face Classifiers on Criminality

As argued in the introduction, one way of assessing the
accuracy of the automated inference on criminality based
solely on still face images is to build and test classifiers with
modern machine learning techniques. This section presents
the design and results of the classification experiments.

3.1. Methods

In order to prove or disprove the hypothesis that still face
images suffice to distinguish criminals and non-criminals,
we try to make our investigations as thorough as possible.
We run four different classification methods, logistic regres-
sion, KNN, SVM and CNN, on the image data set S pre-
pared as above.

As the first three classification methods work on image
features, we run them and evaluate their performances on a
wide range of features, including 1. Facial landmark points
like eye corners, mouth corners and tip of the nose, etc.;
2. Facial feature vector generated by modular PCA [18]; 3.
Facial feature vector based on Local Binary Pattern (LBP)
histograms [1]; 4. The concatenation of the above three fea-
ture vectors. We stress that the landmark points are defined
of strategic positions on a face, hence they are features that
are beyond signal level and invariant to source cameras.

Our convolutional neural network is constructed by re-
training the parameters of every layer in AlexNet [21] while
retaining its architecture.

Define the criminal subset Sc as the positive class and
the non-criminal subset Sn as the negative class. We per-
form 10-fold cross validation for all possible combinations
of the three feature-driven classifiers and the four types of
feature vectors, plus data-driven CNN without explicit fea-
ture vector; altogether thirteen cases (3 classifiers ⇥ 4 fea-
ture vectors plus CNN) of 10-fold cross validation type. In
the interest of statistic significance we repeated the cross
validation for each of the thirteen cases ten times with dif-
ferent random seeds. In each of these (13 cases ⇥ 10 runs)
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Should	prison	sentences	be	based	on	crimes	
that	haven’t	been	committed	yet?

§ US	judges	use	proprietary	ML	to	predict	recidivism	risk

§ Much	more	likely	to	mistakenly	flag	black	defendants
§ Even	though	race	is	not	used	as	a	feature	

61
http://go.nature.com/29aznyw
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing#.odaMKLgrw
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



What	is Fair?
A Protected	attribute	(eg, race)
X Other	attributes	(eg,	criminal	record)	
Y’	=	f(X,A) Predicted	to	commit	crime
Y Will	commit	crime
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§ Fairness	through	unawareness
Y’	=	f(X)	not	f(X,	A)		but	Northpointe satisfied	this!

§ Demographic	Parity
Y’					A i.e.	P(Y’=1	|A=0)=P(Y’=1	|	A=1)
Insufficient:	can	predict	white	criminals,	black	randomly
Furthermore,	if	Y	 /		A,	it	rules	out	ideal	predictor	Y’=Y

C. Dwork et al. “Fairness through awareness” ACM ITCS, 214-226, 2012



What	is Fair?
A Protected	attribute	(eg, race)
X Other	attributes	(eg,	criminal	record)	
Y’	=	f(X,A) Predicted	to	commit	crime
Y Will	commit	crime
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§ Calibration	within	groups
Y						A |	Y’
No	incentive	for	judge	to	ask	about	A

§ Equalized	odds
Y’					A	|	Y i.e.	∀y,		P(Y’=1	|	A=0,	Y=y)	=	P(Y’=1	|	A=1,	Y=y)
Same	rate	of	false	positives	&	negatives

§ Can’t	achieve	both!
Unless	Y				A			or	Y’	perfectly	=	Y

J. Kleinberg et al “Inherent Trade-Offs in 
Fair Determination of Risk Score” 
arXiv:1609.05807v2



Guaranteeing	Equal	Odds
Given	any	predictor,	Y’
Can	create	a	new	predictor	satisfying	equal	odds

Linear	program	to	find	convex	hull
Bayes-optimal	computational	affirmative	action
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§ Calibration	within	groups
Y						A |	Y’
No	incentive	for	judge	to	ask	about	A

§ Equalized	odds
Y’					A	|	Y i.e.	∀y,		P(Y’=1	|	A=0,	Y=y)	=	P(Y’=1	|	A=1,	Y=y)
Same	rate	of	false	positives	&	negatives

M. Hardt et al “Equality of Opportunity in 
Supervised Learning” arXiv:1610.02413v1



Important	to	get	this	Right!

Feedback	Cycles

65

Data Automated
Policy

Machine	Learning



Appeals	&	Explanations

Must	an	AI	system	explain	itself?
§Tradeoff	between	accuracy	&	explainability
§How	to	guarantee	than	an	explanation	is	right
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Liability?

§Microsoft?
§Google?
§ Biased	/	Hateful	people	who	created	the	data?

§ Legal	standard
§Criminal	intent
§Negligence
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Liability	II

§ Stephen	Cobert’s twitter-bot
§Substitutes	FoxNews personalities	into	Rotten	Tomato	reviews	

§Tweet	implied	Bill	Hemmer	took	communion	while	intoxicated.

§ Is	this	libel	(defamatory	speech)?	

68
http://defamer.gawker.com/the-colbert-reports-new-twitter-feed-praising-fox-news-1458817943



Understanding	Limitations

How	to	convey	the	limitations	of	an	AI	system	to	user?
§ Challenge	for	self-driving	car
§Or	even	adaptive	cruise	control	(parked	obstacle)
§ Google	Translate
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Exponential	Growth	à
Hard	to	Predict	Tech	Adoption
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Adoption	Accelerating

Newer technologies taking hold at double or triple the rate



Self-Driving	Vehicles

§ 6%	of	US	jobs	in	trucking	&	transportation
§What	happens	when	these	jobs	eliminated?
§ Retrained	as	programmers?
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Hard	to	Predict

74http://www.aei.org/publication/what-atms-bank-tellers-rise-robots-and-jobs/



Conclusions	

§Distractions			vs.
§ Important	Concerns
§ Sorcerer’s	Apprentice	Scenario

§Specifying	Constraints	&	Utilities
§Explainable	AI

§Data	Risks
§Attacks
§Bias	Amplification

§Deployment			
§Responsibility,	Liability,	Employment
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People worry that computers 
will get too smart and take 
over the world, but the real 
problem is that they're too 
stupid and they've already 

taken over the world.
- Pedro Domingos



Thanks

§ Formative	discussions	with
§Gagan Bansal,	Ryan	Calo,	Oren	Etzioni,	Jeff	Heer,	Rao	
Kambhampati,	Mausam,	Tongshuang Wu

§Research	Sponsors
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• Inverse	revinforcement learning

• Structural	estimation	of	MDPs

• Inverse	optimal	control

• But	don’t	want	agent	to	adopt	human	values

• Watch	me	drink	coffee	->	not	want	coffee	itself

• Cooperative	inverse	RL

• Two	player	game

• Off	swicth function

• Don’t	given	robot	an	objective

• Instead	it	must	allow	for	uncertainty	about	human	objctive

• If	human	is	trying	to	turn	me	off,	then	it	must	want	that

• Uncertainty	in	objectives	– ignored

• Irrelevant	in	standard	decision	problems;	unless	env provides	info	on	reward
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DEPLOYING	AI

What	is	bar	for	deployment?

• System	is	better	than	person	being	replaced?

• Errors	are	strict	subset	of	human	errors?

85

human 
errors

machine
errors



• Reward	signals

• Wireheading

• RL	agent	hijacks	reward

• Traditiomnal RL

• Enivironment provide	reward	signal.		Mistak!

• Instead	env reward	signal	is	not	true	reward

• Just	provides	INOFRMATION	about	reward

• So	hijacking	reward	signal	is	pointless

• Doesn’t	provide	more	reward

• Just	provides	less	information
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• Y	Lecunn – common	view

• All	ai success	is	supervised	(deep)	MLL

• Unsupervised	is	key	challenge

• Fill	in	occluded	immage

• Fill	in	missing	words	in	text,	sounds		in	speech

• Consquences of	actions

• Seq of	actions	leading	to	observed	situation

• Brain	has	10E14	synapses	but	live	for	only	10e9	secs,	so	more	params than	data

• 100	years	*	400	days	*	25	hours	=	100k	hours.		3600	seconds

• Types

• RL	a	few	bits	/	trial

• Supervisesd 10-10000	bits	trial

• Unsupervise – millions	bits	/	trial,	but	unreliable

• Dark	matter	of	AI

• Thier FAIR	system	won	visdoom challenge	– sub	for	pub	ICML	or	vision	conf 2017

• Sutton’s	dyna	arch
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• Transformation	of	ML

• Learning	as	minimizing	loss	function	à

• Learning	as	finding	nash equilibrium	in	2	player	game

• Hierarchical	deep	RL
• Concept	formation	(abstraction,	unsupervised	ML)
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