CSE-573 Artificial Intelligence

Partially-Observable MDPS
 (POMDPs)

Todo

- Key slides don't have Y axis labeled - NOT value

Classical

Stochastic (MDP)

Partially-Observable Stochastic (POMDP)

Classical Planning

MDP-Style Planning

Stochastic, Partially Observable

Markov Decision Process (MDP)

$$
\begin{array}{lll}
\text { - } & \mathbf{S}: & \text { set of states } \\
\text { - } & \mathbf{A}: & \text { set of actions } \\
\text { - } & \operatorname{Pr}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \mathrm{a}\right): & \text { transition model } \\
\text { - } & \mathbf{R}\left(\mathrm{s}, \mathrm{a}, \mathrm{~s}^{\prime}\right): & \text { reward model } \\
- & \gamma: & \text { discount factor } \\
\text { - } & \mathrm{s}_{0}: & \text { start state }
\end{array}
$$

Partially-Observable MDP

set of states

- A: set of actions
- $\operatorname{Pr}\left(s^{\prime} \mid s, a\right)$: transition model
- R(s,a, s'): reward model
- γ :
- s_{0} :
- E
- $\operatorname{Pr}(\mathrm{e} \mid \mathrm{s})$

Belief State

- State of agent's mind
- Not just of world

Note: POMDP

Planning in Belief Space

For now, assume movement is deterministic
And NO observations possible

Exp. Reward: 0

Exp. Reward: 0

Partially-Observable MDP

set of states

- A: set of actions
- $\operatorname{Pr}\left(s^{\prime} \mid s, a\right)$: transition model
- R(s,a, s'): reward model
- γ :
- s_{0} :
- E
discount factor
start state
set of possible evidence (aka observations, measurements)

Evidence Model

$\mathrm{e} / \mathrm{w}=$ location of devil
$\mathrm{b} / \mathrm{m} / \mathrm{ul} / \mathrm{ur}=$ location of agent

- S $=\left\{\mathrm{s}_{\mathrm{wb}}, \mathrm{s}_{\mathrm{eb}}, \mathrm{s}_{\mathrm{wm}}, \mathrm{s}_{\mathrm{em}} \mathrm{s}_{\mathrm{wul}}, \mathrm{s}_{\text {eul }} \mathrm{s}_{\text {wur }}, \mathrm{s}_{\mathrm{eur}}\right\}$
- $\mathbf{E}=\{$ heat $\}$
- $\operatorname{Pr}(\mathrm{e} \mid \mathrm{s}):$
$\operatorname{Pr}\left(\right.$ heat $\left.\mid \mathrm{s}_{\mathrm{eb}}\right)=1.0$
$\operatorname{Pr}\left(\right.$ heat $\left.\mid s_{w b}\right)=0.2$
$\operatorname{Pr}\left(\right.$ heat $\left.\mid \mathrm{s}_{\text {other }}\right)=0.0$
$S_{e b}$

Updating beliefs given evidence

$\operatorname{Pr}\left(\right.$ heat $\left.\mid \mathrm{s}_{\mathrm{eb}}\right)=1.0$
$\operatorname{Pr}\left(\right.$ heat $\left.\mid s_{w b}\right)=0.2$

Use Bayes rule:
$P(s \mid e)=P(e \mid s) P(s) / P(e)$

Objective of a Fully Observable MDP

- Find a policy
$\pi: \mathbf{S} \rightarrow \mathbf{A}$
- which maximizes expected discounted reward
- given an infinite horizon
- assuming full observability

Objective of a POMDP

- Find a policy
π : BeliefStates(S) $\rightarrow \mathbf{A}$
A belief state is a probability distribution over states
- which maximizes expected discounted reward
- given an infinite horizon
- assuming partial \& noisy observability

Planning in last HW

- Map Estimate
- Now "know" state
- Solve MDP

Best plan to eat final food?

Best plan to eat final food?

Problem with Planning from MAP Estimate

49\%

51\%

- Best action for belief state over k worlds may not be the best action in any one of those worlds

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
π : beliefs \rightarrow actions
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space: $V_{T}(b)=\max _{u}\left[r(b, u)+\gamma \int V_{T-1}\left(b^{\prime}\right) p\left(b^{\prime} \mid u, b\right) d b^{\prime}\right]$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.

■ This is challenging, since probability distributions are continuous.

- How many belief states are there?

■ How many policies are there?
■ For finite worlds with finite state, action, and evidence spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

The Parameters of the Example

- The actions u_{l} and u_{2} are terminal actions.
- The action u_{3} is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma=1$.

$$
\begin{array}{rlrl}
r\left(x_{1}, u_{1}\right) & =-100 & r\left(x_{2}, u_{1}\right) & =+100 \\
r\left(x_{1}, u_{2}\right) & =+100 & r\left(x_{2}, u_{2}\right) & =-50 \\
r\left(x_{1}, u_{3}\right) & =-1 & r\left(x_{2}, u_{3}\right) & =-1 \\
p\left(x_{1}^{\prime} \mid x_{1}, u_{3}\right) & =0.2 & p\left(x_{2}^{\prime} \mid x_{1}, u_{3}\right) & =0.8 \\
p\left(x_{1}^{\prime} \mid x_{2}, u_{3}\right) & =0.8 & p\left(z_{2}^{\prime} \mid x_{2}, u_{3}\right) & =0.2 \\
p\left(z_{1} \mid x_{1}\right) & =0.7 & p\left(z_{2} \mid x_{1}\right) & =0.3 \\
p\left(z_{1} \mid x_{2}\right) & =0.3 & p\left(z_{2} \mid x_{2}\right) & =0.7
\end{array}
$$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
\square In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$
\begin{aligned}
r(b, u) & =E_{x}[r(x, u)] \\
& =\int r(x, u) p(x) d x \\
& =p_{1} r\left(x_{1}, u\right)+p_{2} r\left(x_{2}, u\right)
\end{aligned}
$$

Payoffs in Our Example:

- If we are totally certain that we are in state x_{l} and execute action $u_{l,}$ we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_{2} and execute u_{1}, the reward is +100 .
- In between it is the linear combination of the extreme values weighted by the probabilities

Payoffs in Our Example

- If we are totally certain that we are in state x_{1} and execute action $u_{l,}$ we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_{2} and execute u_{1}, the reward is +100 .
- In between it is the linear combination of the extreme values weighted by the probabilities

$$
\begin{aligned}
r\left(b, u_{1}\right) & =-100 p_{1}+100 p_{2} \\
& =-100 p_{1}+100\left(1-p_{1}\right) \\
& =100-200 p_{1} \\
r\left(b, u_{2}\right) & =100 p_{1}-50\left(1-p_{1}\right) \\
& =150 p_{1}-50 \\
r\left(b, u_{3}\right) & =-1
\end{aligned}
$$

Payoffs in Our Example (2)

$r\left(b, u_{3}\right)$

The Resulting Policy for $\mathbf{T}=1$

- Given a finite POMDP with time horizon = 1
- Use $V_{l}(b)$ to determine the optimal policy.

$$
\pi_{1}(b)= \begin{cases}u_{1} & \text { if } p_{1} \leq \frac{3}{7}=0.429 \\ u_{2} & \text { if } p_{1}>\frac{3}{7}\end{cases}
$$

- Corresponding value:

Piecewise Linearity, Convexity

- The resulting value function $V_{l}(b)$ is the maximum of the three functions at each point

$$
V_{1}(b)=\max _{u} r(b, u)
$$

$$
=\max \left\{\begin{array}{cc}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right) \\
0 &
\end{array}\right\}
$$

- I.e., it's piecewise linear and convex.

Pruning

- With $V_{l}(b)$, note that only the first two components contribute.
- The third component can be safely pruned

$$
V_{1}(b)=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
$$

Incorporating Observation

- Suppose that the robot can receive an observation before deciding on an action.

Incorporating Observation

- Suppose it perceives z_{1} : $p\left(z_{1} \mid x_{1}\right)=0.7$ and $p\left(z_{l} \mid x_{2}\right)=0.3$.
- Given the obs z_{1} we update the belief using Bayes rule.

$$
p_{1}^{\prime}=\frac{0.7 p_{1}}{p\left(z_{1}\right)} \text { where } p\left(z_{1}\right)=0.7 p_{1}+0.3\left(1-p_{1}\right)=0.4 p_{1}+0.3
$$

- Now, $V_{l}\left(b \mid z_{1}\right)$ is given by

$$
\begin{aligned}
V_{1}\left(b \mid z_{1}\right) & =\max \left\{\begin{aligned}
-100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & +100 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)} \\
100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & -50 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)}
\end{aligned}\right\} \\
& =\frac{1}{p\left(z_{1}\right)} \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Expected Value after Measuring

■ But, we do not know in advance what the next measurement will be,
■ So we must compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b) & =E_{z}\left[V_{1}(b \mid z)\right]=\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
& =\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(\frac{p\left(z_{i} \mid x_{1}\right) p_{1}}{p\left(z_{i}\right)}\right) \\
& =\sum_{i=1}^{2} V_{1}\left(p\left(z_{i} \mid x_{1}\right) p_{1}\right)
\end{aligned}
$$

Expected Value after Measuring

■ But, we do not know in advance what the next measurement will be,
■ So we must compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b)= & E_{z}\left[V_{1}(b \mid z)\right] \\
= & \sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
= & \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\} \\
& +\max \left\{\begin{array}{rr}
-30 p_{1} & +70\left(1-p_{1}\right) \\
30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Resulting Value Function

- The four possible combinations yield the following function which then can be simplified and pruned.

$$
\begin{aligned}
\bar{V}_{1}(b) & =\max \left\{\begin{array}{rrrr}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
& =\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Value Function

Increasing the Time Horizon

- When the agent selects u_{3} its state may change.
- When computing the value function, we have to take these potential state changes into account.

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{x}=\mathrm{x}_{1} \text { after executing } \mathrm{u}_{3}\right) \\
& p_{1}^{\prime}=E_{x}\left[p\left(x_{1} \mid x, u_{3}\right)\right] \\
& =\sum_{i=1}^{2} p\left(x_{1} \mid x_{i}, u_{3}\right) p_{i} \\
& =0.2 p_{1}+0.8\left(1-p_{1}\right)_{0.2} \\
& =0.8-0.6 p_{1}
\end{aligned}
$$

Resulting Value Function after executing u_{3}

Taking the state transitions into account, we finally obtain.

$$
\begin{aligned}
& \bar{V}_{1}(b)=\max \left\{\begin{array}{llll}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
& \quad=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\} \\
& \bar{V}_{1}\left(b \mid u_{3}\right)
\end{aligned} \begin{array}{r}
\max \left\{\begin{array}{rr}
60 p_{1} & -60\left(1-p_{1}\right) \\
52 p_{1} & +43\left(1-p_{1}\right) \\
-20 p_{1} & +70\left(1-p_{1}\right)
\end{array}\right\}
\end{array}
$$

Value Function after executing u_{3}

Value Function for $\mathbf{T}=2$

- Taking into account that the agent can either directly perform u_{1} or u_{2} or first u_{3} and then u_{1} or u_{2}, we obtain (after pruning)

$$
\bar{V}_{2}(b)=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right) \\
51 p_{1} & +42\left(1-p_{1}\right)
\end{array}\right\}
$$

Graphical Representation of $V_{2}(b)$

Deep Horizons

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for $\mathrm{T}=10$ and $\mathrm{T}=20$ are

Deep Horizons and Pruning

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for $\mathrm{T}=20$ includes more than $10^{547,864}$ linear functions.
- At $\mathrm{T}=30$ we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why exact solution of POMDPs is usually impractical

POMDP Approximations

- Point-based value iteration
- QMDPs
- AMDPs

Point-based Value Iteration

- Maintains a set of example beliefs
- Only considers constraints that maximize value function for at least one of the examples

Point-based Value Iteration

Value functions for $\mathrm{T}=30$

Exact value function
PBVI

QMDPs

- QMDPs only consider state uncertainty in the first step
- After that, assume that the world is fully observable.

POMDP Summary

■ POMDPs compute the optimal action in partially observable, stochastic domains.

- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
■ Until recently, POMDPs only applied to very small state spaces with small numbers of possible observations and actions.
- But with PBVI, $|S|=$ millions

