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Todo

= Key slides don’t have Y axis labeled — NOT value
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Classical Planning
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MDP-Style Planning
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Stochastic, Partially Observable
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Markov Decision Process (MDP)

K S: set of states \

A: set of actions

= Pr(s’|s,a): transition model
= R(s,a,s’): reward model
"y discount factor

k‘SOZ start state /




Partially-Observable MDP

/ S: set of states

= A set of actions
= Pr(s’|s,a): transition model
= R(s,a,s’): reward model

"y discount factor
" S, start state
= E set of possible evidence (observations)

~
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Belief State

= State of agent’s mind
= Not just of world

Note: POMDP




Planning in Belief Space 7 ™~
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Partially-Observable MDP

/ S: set of states \

= A set of actions

= Pr(s’|s,a): transition model
= R(s,a,s’): reward model

"y discount factor
" S, start state
= E set of possible evidence (aka observations,

measurements)
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e/w = location of devil
b/m/ul/ur = location of agent

Evidence Model

" S = {wal Sebl SWml Sem Swuli Seul Swur' Seur} gﬂﬁ
= E ={heat} | S—
u Pr(e | S): Seb

Pr(heat | s.,) =1.0
Pr(heat | s,,) =0.2

Pr(heat | s_,.,) = 0.0 %ﬁ
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Pr(heat | s,) = 1.0

Updating beliefs given Priheat | 5.,) = 0.2

evidence
Use Bayes rule: ~ ~
P(s | e) = P(e | s)P(s) / P(e) X -
—heat 168‘30/ 6&;
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Objective of a Fully Observable MDP

" Find a policy
T:S=>A

= which maximizes expected discounted reward

 given an infinite horizon

e assuming full observability



Objective of a POMDP

" Find a policy
m: BeliefStates(S) - A
A belief state is a probability distribution over states

= which maximizes expected discounted reward

 given an infinite horizon

e assuming partial & noisy observability



Planning in last HW

= Map Estimate
= Now “know” state
= Solve MDP

=



Best plan to eat final food?




Best plan to eat final food?




Problem with Planning from MAP Estimate

49% 91%

= Best action for belief state over k worlds may not be
the best action in any one of those worlds



POMDPs
m In POMDPs we apply the very same idea as in MDPs.

m Since the state is not observable, the agent has to
make its decisions based on the belief state which is a
posterior distribution over states.

1t : beliefs = actions

m Let b be the belief of the agent about the state under
consideration.

m POMDPs compute a value function over belief space:
Vr(b) = max {fr(b, w) +v[ V1 (0)p(t | u,b) b
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Problems

m Each belief is a probability distribution, thus, each value
in a POMDP is a function of an entire probability
distribution.

m This is challenging, since probability distributions are
continuous.

m How many belief states are there?

m How many policies are there?

m For finite worlds with finite state, action, and evidence
spaces and finite horizons, however, we can effectively
represent the value functions by piecewise linear
functions.

23



An Illustrative Example

measurements
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The Parameters of the Example

m The actions u, and u, are terminal actions.

m The action u; is a sensing action that potentially
leads to a state transition.

m The horizon is finite and y=1.

r(xq,u1) = —100 r(xo,u1) = 4100
r(xq1,up) = —+100 r(zo,uns) = —50 <¢=m
’I“(ilj‘]_,’u,:_?,) = -1 T(CCQ,’LL?,) = -1
p(ahfe1,uz) = 0.2 p(ahley,uz) = 0.8
p(zhlzo,uz) = 0.8 p(zplzz,uz) = 0.2
p(z1lz1) = 0.7 p(z2]z1) = 0.3
p(z1lzo) = 0.3 p(zalzp) = 0.7
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Payoff in POMDPs

m In MDPs, the payoff (or return)
depended on the state of the system.

m In POMDPs, however, the true state is
not exactly known.

m Therefore, we compute the expected
payoff by integrating over all
states:

r(b,u)

Exlr(x,u)]
/fr(x, w)p(x) dx

p1 r(x1,u) + p2 r(x2, u)
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Payoffs in Our Example:

m If we are totally certain that we | |

are in state x, and execute action u,,
we receive a reward of -100

m If, on the other hand, we definitely know that we
are in x, and execute u,, the reward is +100.

m In between it is the linear combination of the
extreme values weighted by the probabilities

Reward (b u1) —100 py + 100 p
100 p1 + 100 (1 — p1)

= 100 - 200 p,

50r

O_

=501

-100

0 02 04 06 08 1P1 - P(State=X1) 28



Payoffs in Our Example:

m If we are totally certain that we Gl | e
are in state x, and execute action u,,
we receive a reward of -100

m If, on the other hand, we definitely know that we
are in x, and execute u,, the reward is +100.

m In between it is the linear combination of the
extreme values weighted by the probabilities

r(b,u1) = —100p1 + 100 p>
— —100p1 4+ 100 (1 —pq1)
= 100 —200 p,
r(b,ur) = 100p1 —50 (1 —9p1)
= 150 p, — 50
r(b,uz) = -1 29



Payoffs in Our Example (2)
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The Resulting Policy for T=1

m Given a finite POMDP with time horizon = 1
m Use V,(b) to determine the optimal policy.

wy ifpp <3 =0429
m1(b) =
up if pp >3
m Corresponding value:

-50

~100; 02 04 06 08 1
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Piecewise Linearity, Convexity

m The resulting value function V,(b) is
the maximum of the three functions
at each point

Vi(b) = max r(b,u)

( —100p; +100 (1 —pqp) |
max « 100 pq —50 (1 —pq1)
0

\ /

m[.e., it's piecewise linear and convex.
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Pruning

0;

-50

~100 02 04 06 08 1

m With V,(b), note that only the first two
components contribute.

m The third component can be safely
pruned

_ —100p; +100 (1 —p1)
Vi(b) = max{ 100 p; =50 (1 —p1)
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Incorporating Observation

m Suppose that the robot can receive an observation
before deciding on an action.

Vi(b)
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Incorporating Observation

m Suppose it perceives z;:

- 0.7p,
p(z))

'

P

p(z; | x;)=0.7 and p(z,| x,)=0.3.
m Given the obs z; we update the belief using Bayes rule.

where p(z,)=0.7p, +0.3(1-p,)=0.4p, +0.3

m Now, V,(b| z;) is given by

Vi(b| 21)

Max <

1
p(z1)

\

100 -

100 -

max{

0.7 p1

100 -

0.3 (1-p3) °

p(21)

0.7 P1
p(z1)

p(21)

0.3 (1—]91)

—50 p(21)

—70p1 +30(1—p1)

70 pq

—15 (1 — p1) }

/
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Expected Value after Measuring

m But, we do not know Iin advance what
the next measurement will be,

m SO0 we must compute the expected belief
T7l(b)=EZ[V1(b|Z)]=Zp(2,-)V1(b|Zl~)
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Expected Value after Measuring

m But, we do not know Iin advance what
the next measurement will be,

m SO0 we must compute the expected belief
Vi(b) = E:[Vi(b]2)]
2
= > p(z) Vi(b] z)
1=1

—70p; +30 (1 —p1)
max
{ 70p1 —15(1 —p1)

+max{ —30py +70 (1 —py1) }

30p; —35(1—p1)

38



Resulting Value Function

m The four possible combinations yield the
following function which then can be simplified
and pruned.

( —70p; +30(1—p1) —30p1 +70(1—p1) ]
—70p; +30(1 —p1) +30p; —35(1—p1)
+70p; —15(1—-p1) —30p;y +70(1—p1)

| +70p; —-15(1—p3) +30p; —-35(1—p1) |

( —100p; +100 (1 —pq) ]
= max{ +40py +55(1—-p71)
| +100p; —-50(1—p1) |

V1(b) max «

~

Ve

39



Value Function

100

p(z,) Vi(blz,)

0 0.2 0.4 0.6 0.8
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p(z,) Va(blz;) 40
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Increasing the Time Horizon

m When the agent selects u; its state may change.

m When computing the value function, we have to take
these potential state changes into account.

P(x=x, after executing u,)
1r

p1 = Ezlp(zy|z,u3)] o8
2 0.6¢

= > p(z1 |z, u3)p;
i—1 0.4f
= 0.2p1 +0.8(1 —p1) 44l
= 0.8 0.6p 0

0 0.2 0.4 0.6 0.8 1

P(x=x, originally)



Resulting Value Function after executing u;

Taking the state transitions into account, we finally obtain.

Vi(b) = max:
= max
Vi(b|uz) =

—70 p1
—70 pq
+70 p1
+70 p1

—100 pq
+40 p
+100 p1

max |

+30 (1 —-p1) —30py +70
+30 (1 —p1) +30p; —-35
—15(1—-p1) —-30p1 +70

—-15(1—-p1) +30p; -35
+100 (1 —p1) |
+55(1—-p1) ¢
—50 (1 —p1) |
60p1 —60(1—py)
52p1 +43 (1 —p1)
—20p1 +70(1 —p1) |

(1 —-p1)
(1—p1)
(1 —p1)
(1 — pl) )

~

_—
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Value Function after executing u,

\bar{V}(b)

P(x=x, after executing u,)

ol
1.
0.8 -50
> 199 02 04 06 0.8 1
4 100;
0.2
50}
% 02 04 06 08 i
P(x=x, originally) ol
-50}
\bar{V};(blus)




Value Function for T=2

m Taking into account that the agent can
either directly perform u,; or u, or first u; and
then u; or u,, we obtain (after pruning)

) (—100p; +100(1—py)
Vz(b) — Mmax{ 100 pq —50 (1 —pl) )
. 51p; +42(1 —p1) |
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Graphical Representation of //,(b)

100 U, Optima| U, optimal

50

measuring iIs
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nere
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Deep Horizons

m We have now completed a full backup in belief space.
m This process can be applied recursively.
m The value functions for T=10 and T=20 are

100 100

80 80

60 60f

40} 401

20} 207




Deep Horizons and Pruning
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Why Pruning is Essential

Each update introduces additional linear
components to 7.

Each measurement squares the number of
linear components.

Thus, an unpruned value function for T=20 includes
more than 10-47/:864 |inear functions.

At T=30 we have 10°61,012,337 |inhear functions.

The pruned value functions at T=20, in comparison,
contains only 12 linear components.

The combinatorial explosion of linear components in
the value function are the major reason why
exact solution of POMDPs is usually impractical
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POMDP Approximations

m Point-based value iteration
m QMDPs

m AMDPs
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Point-based Value Iteration

m Maintains a set of example beliefs

m Only considers constraints that
maximize value function for at least
one of the examples

51



Point-based Value Iteration

Value functions for T=30

10

90

80r

701

60

50 ' - ' - '
0 02 04 06 08 1

Exact value function PBVI
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QMDPs

m QMDPs only consider state
uncertainty in the first step

m After that, assume that the world is
fully observable.
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POMDP Summary

m POMDPs compute the optimal action in partially
observable, stochastic domains.

m For finite horizon problems, the resulting value
functions are piecewise linear and convex.

® |n each iteration the number of linear
constraints grows exponentially.

m Until recently, POMDPs only applied to very
small state spaces with small numbers of
possible observations and actions.

m But with PBVI, |S| = millions

56



