CSE-573 Artificial Intelligence

Partially-Observable MDPS (POMDPs)

Todo

Key slides don't have Y axis labeled – NOT value

Classical

Stochastic (MDP)

Partially-Observable Stochastic (POMDP)

Classical Planning

MDP-Style Planning

hell heaven World stochastic State observable

Policy

Stochastic, Partially Observable

Markov Decision Process (MDP)

- set of states
- A: set of actions
- Pr(s'|s,a): transition model
- R(s,a,s'): reward model
- \blacksquare γ : discount factor
- s₀: start state

Partially-Observable MDP

- set of states
- A: set of actions
- Pr(s'|s,a): transition model
- R(s,a,s'): reward model
- \blacksquare γ : discount factor
- \bullet s_0 : start state
- E set of possible evidence (observations)
- Pr(e|s)

Belief State

- State of agent's mind
- Not just of world

Note: POMDP

Planning in Belief Space

For now, assume movement is deterministic

And *NO* observations possible

Exp. Reward: 0

Exp. Reward: 0

Partially-Observable MDP

```
set of states
```

- Set of actions
- Pr(s'|s,a): transition model
- R(s,a,s'): reward model
- \blacksquare γ : discount factor
- \bullet s_0 : start state
- E set of possible evidence (aka observations, measurements)
- Pr(e|s)

Evidence Model

e/w = location of devilb/m/ul/ur = location of agent

$$= \{s_{wb}, s_{eb}, s_{wm}, s_{em} s_{wul}, s_{eul} s_{wur}, s_{eur}\}$$

- **E** = {heat}
- Pr(e|s):

$$Pr(heat | s_{eb}) = 1.0$$

$$Pr(heat \mid s_{wb}) = 0.2$$

$$Pr(heat \mid s_{other}) = 0.0$$

Updating beliefs given evidence

Pr(heat | s_{eb}) = 1.0 Pr(heat | s_{wb}) = 0.2

Use Bayes rule:

$$P(s \mid e) = P(e \mid s)P(s) / P(e)$$

Objective of a Fully Observable MDP

Find a policy

$$\pi: S \to A$$

- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming full observability

Objective of a POMDP

Find a policy

 π : BeliefStates(S) \rightarrow A

A belief state is a *probability distribution* over states

- which maximizes expected discounted reward
 - given an infinite horizon
 - assuming partial & noisy observability

Planning in last HW

- Map Estimate
- Now "know" state
- Solve MDP

Best plan to eat final food?

Best plan to eat final food?

Problem with Planning from MAP Estimate

49% 51%

 Best action for belief state over k worlds may not be the best action in *any one* of those worlds

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.

 π : beliefs \rightarrow actions

- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_{u} \left[r(b, u) + \gamma \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is challenging, since probability distributions are continuous.
 - How many belief states are there?
 - How many policies are there?
- For finite worlds with finite state, action, and evidence spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action u_3 is a sensing action that potentially leads to a state transition.
- The horizon is finite and γ =1.

$$r(x_1, u_1) = -100$$
 $r(x_2, u_1) = +100$
 $r(x_1, u_2) = +100$ $r(x_2, u_2) = -50$ $r(x_1, u_3) = -1$ $r(x_2, u_3) = -1$ $r(x_2, u_3) = -1$ $r(x_2, u_3) = 0.8$
 $p(x_1'|x_1, u_3) = 0.2$ $p(x_2'|x_1, u_3) = 0.8$
 $p(x_1'|x_2, u_3) = 0.8$ $p(z_2'|x_2, u_3) = 0.2$ $p(z_2|x_1) = 0.3$
 $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example 2,

In between it is the linear combination of the extreme values weighted by the probabilities

Payoffs in Our Example z₁

- If we are totally certain that we are in state x_1 and execute action u_1 , we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

$$= -100 p_1 + 100 (1 - p_1)$$

$$= 100 - 200 p_1$$

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$= 150 p_1 - 50$$

$$r(b, u_3) = -1$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given a finite POMDP with time horizon = 1
- Use $V_1(b)$ to determine the optimal policy.

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \leq \frac{3}{7} = 0.429 \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

Corresponding value:

Piecewise Linearity, Convexity

■ The resulting value function $V_1(b)$ is the maximum of the three functions at each point

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 & p_1 & +100 & (1 - p_1) \\ 100 & p_1 & -50 & (1 - p_1) \\ 0 & & \end{array} \right\}$$

I.e., it's piecewise linear and convex.

Pruning

- With $V_1(b)$, note that only the first two components contribute.
- The third component can be safely pruned

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Incorporating Observation

Suppose that the robot can receive an observation before deciding on an action.

Incorporating Observation

- Suppose it perceives z_1 : $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the obs z_1 we update the belief using Bayes rule.

$$p'_1 = \frac{0.7p_1}{p(z_1)}$$
 where $p(z_1) = 0.7p_1 + 0.3(1 - p_1) = 0.4p_1 + 0.3$

Now, $V_1(b \mid z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$

Expected Value after Measuring

- But, we do not know in advance what the next measurement will be,
- So we must compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^{2} p(z_i)V_1(b \mid z_i)$$

$$= \sum_{i=1}^{2} p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$

$$= \sum_{i=1}^{2} V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

- But, we do not know in advance what the next measurement will be,
- So we must compute the expected belief

$$\bar{V}_{1}(b) = E_{z}[V_{1}(b \mid z)]$$

$$= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i})$$

$$= \max \left\{ \begin{array}{ccc}
-70 p_{1} & +30 (1 - p_{1}) \\
70 p_{1} & -15 (1 - p_{1})
\end{array} \right\}$$

$$+ \max \left\{ \begin{array}{ccc}
-30 p_{1} & +70 (1 - p_{1}) \\
30 p_{1} & -35 (1 - p_{1})
\end{array} \right\}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} + 30 \ (1 - p_{1}) & -30 \ p_{1} + 70 \ (1 - p_{1}) \\ -70 \ p_{1} + 30 \ (1 - p_{1}) & +30 \ p_{1} & -35 \ (1 - p_{1}) \\ +70 \ p_{1} & -15 \ (1 - p_{1}) & -30 \ p_{1} & +70 \ (1 - p_{1}) \\ +70 \ p_{1} & -15 \ (1 - p_{1}) & +30 \ p_{1} & -35 \ (1 - p_{1}) \end{cases}$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_{1} & +100 \ (1 - p_{1}) \\ +40 \ p_{1} & +55 \ (1 - p_{1}) \\ +100 \ p_{1} & -50 \ (1 - p_{1}) \end{array} \right\}$$

Value Function

Increasing the Time Horizon

- When the agent selects u_3 its state may change.
- When computing the value function, we have to take these potential state changes into account.

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases}
-70 p_{1} +30 (1-p_{1}) -30 p_{1} +70 (1-p_{1}) \\
-70 p_{1} +30 (1-p_{1}) +30 p_{1} -35 (1-p_{1}) \\
+70 p_{1} -15 (1-p_{1}) -30 p_{1} +70 (1-p_{1}) \\
+70 p_{1} -15 (1-p_{1}) +30 p_{1} -35 (1-p_{1})
\end{cases}$$

$$= \max \begin{cases}
-100 p_{1} +100 (1-p_{1}) \\
+40 p_{1} +55 (1-p_{1}) \\
+100 p_{1} -50 (1-p_{1})
\end{cases}$$

$$\bar{V}_{1}(b \mid u_{3}) = \max \begin{cases}
60 p_{1} -60 (1-p_{1}) \\
52 p_{1} +43 (1-p_{1}) \\
-20 p_{1} +70 (1-p_{1})
\end{cases}$$

Value Function after executing u_3

 $\brace {V}_1(b)$

 $P(x=x_1 \text{ after executing } u_3)$

 $\text{bar}\{V\}_1(b|u_3)$

Value Function for T=2

■ Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2 , we obtain (after pruning)

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Graphical Representation of $V_2(b)$

Deep Horizons

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Deep Horizons and Pruning

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an unpruned value function for T=20 includes more than 10^{547,864} linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why exact solution of POMDPs is usually impractical

POMDP Approximations

Point-based value iteration

QMDPs

AMDPs

Point-based Value Iteration

Maintains a set of example beliefs

 Only considers constraints that maximize value function for at least one of the examples

Point-based Value Iteration

Value functions for T=30

QMDPs

QMDPs only consider state uncertainty in the first step

After that, assume that the world is fully observable.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- Until recently, POMDPs only applied to very small state spaces with small numbers of possible observations and actions.
 - But with PBVI, |S| = millions