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Partially-Observable	Stochastic	(POMDP)
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Classical	Planning

hellheaven

• World deterministic
• State observable• Sequential Plan

Reward100 -100
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MDP-Style	Planning

hellheaven

• World stochastic
• State observable• Policy
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Stochastic,	Partially Observable

sign

hell?heaven?



Markov	Decision	Process	(MDP)

§ S: set	of	states
§ A: set	of	actions
§ Pr(s’|s,a): transition	model
§ R(s,a,s’): reward	model
§ g: discount	factor
§ s0: start	state



Partially-Observable	MDP

§ S: set	of	states
§ A: set	of	actions
§ Pr(s’|s,a): transition	model
§ R(s,a,s’): reward	model
§ g: discount	factor
§ s0: start	state
§ E set	of	possible	evidence	(observations)
§ Pr(e|s)
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Belief	State

sign sign

50% 50%

§ State of agent’s mind

§ Not just of world

Note: POMDP

Probs S = 1



Planning	in	Belief	Space

50% 50%

50% 50%

50% 50%

Exp. Reward: 0

Exp. Reward: 0

For now, assume movement is 
deterministic

And NO observations possible



Partially-Observable	MDP

§ S: set	of	states
§ A: set	of	actions
§ Pr(s’|s,a): transition	model
§ R(s,a,s’): reward	model
§ g: discount	factor
§ s0: start	state
§ E set	of	possible	evidence	(aka	observations,	

measurements)
§ Pr(e|s)



Evidence	Model

§ S					=	{swb,	seb,	swm,	sem swul,	seul swur,	seur}
§ E =	{heat}
§ Pr(e|s):

Pr(heat	|	seb)	=	1.0
Pr(heat	|	swb)	=	0.2
Pr(heat	|	sother)	=	0.0

sign

sign

seb

swb

e/w = location of devil

b/m/ul/ur = location of agent



Updating	beliefs	given	
evidence

sign sign

50% 50%

sign sign

100% 0%

S

sign sign

17% 83%

¬heat

heat

Pr(heat | seb) = 1.0

Pr(heat | swb) = 0.2

Use Bayes rule:

P(s | e) = P(e | s)P(s) / P(e)



Objective	of	a	Fully	Observable	MDP

§ Find	a	policy	
p:	S→ A

§ which	maximizes	expected	discounted	reward

• given	an	infinite	horizon

• assuming	full	observability



Objective	of	a	POMDP

§ Find	a	policy	
 p:	BeliefStates(S) → A
 A	belief	state	is	a	probability	distribution	over	states

§ which	maximizes	expected	discounted	reward

• given	an	infinite	horizon

• assuming	partial &	noisy observability



Planning	in	last	HW

§ Map	Estimate
§ Now	“know”	state
§ Solve	MDP

§1



Best	plan	to	eat	final	food?



Best	plan	to	eat	final	food?



Problem	with	Planning	from	MAP	Estimate

§ Best	action	for	belief	state	over	k	worlds	may	not	be	
the	best	action	in	any	one	of	those	worlds

49% 51%
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POMDPs
n In	POMDPs	we	apply	the	very	same	idea	as	in	MDPs.

n Since	the	state	is	not	observable,	the	agent	has	to	
make	its	decisions	based	on	the	belief	state	which	is	a	
posterior	distribution	over	states.
π	:	beliefs	à actions

n Let	b be	the	belief	of	the	agent	about	the	state	under	
consideration.

n POMDPs	compute	a	value	function	over	belief	space:
g
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Problems
n Each	belief	is	a	probability	distribution,	thus,	each	value	
in	a	POMDP	is	a	function	of	an	entire	probability	
distribution.

n This	is	challenging,	since	probability	distributions	are	
continuous.
n How	many	belief	states	are	there?

n How	many	policies	are	there?

n For	finite	worlds with	finite	state,	action,	and	evidence	
spaces	and	finite	horizons,	however,	we	can	effectively	
represent	the	value	functions	by	piecewise	linear	
functions.	
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An Illustrative Example
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The Parameters of the Example
n The actions u1 and u2 are terminal actions.
n The action u3 is a sensing action that potentially 

leads to a state transition.
n The horizon is finite and g=1.
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Payoff in POMDPs

n In MDPs, the payoff (or return) 
depended on the state of the system.

n In POMDPs, however, the true state is 
not exactly known.

n Therefore, we compute the expected 
payoff by integrating over all 
states: 
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Payoffs in Our Example

n If we are totally certain that we 
are in state x1 and execute action u1, 
we receive a reward of -100

n If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.

n In between it is the linear combination of the 
extreme values weighted by the probabilities
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P1 = P(state=x1)
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Payoffs in Our Example

n If we are totally certain that we 
are in state x1 and execute action u1, 
we receive a reward of -100

n If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.

n In between it is the linear combination of the 
extreme values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1
n Given a finite POMDP with time horizon = 1
n Use V1(b) to determine the optimal policy.

n Corresponding value:

= 0.429
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Piecewise Linearity, Convexity
n The resulting value function V1(b) is 

the maximum of the three functions 
at each point

n I.e., it’s piecewise linear and convex.

0       
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Pruning

n With V1(b), note that only the first two 
components contribute. 

n The third component can be safely 
pruned
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Incorporating Observation
n Suppose that the robot can receive an observation 

before deciding on an action.  

V1(b)
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Incorporating Observation
n Suppose it perceives z1: p(z1 | x1)=0.7 and p(z1| x2)=0.3. 
n Given the obs z1 we update the belief using ...? 

3.04.0)1(3.07.0)(       where
)(

7.0' 1111
1

1
1 +=-+== pppzp

zp
pp

n Now, V1(b |  z1) is given by 

Bayes rule. 
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Expected Value after Measuring

n But, we do not know in advance what 
the next measurement will be, 

n So we must compute the expected belief
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Expected Value after Measuring

n But, we do not know in advance what 
the next measurement will be, 

n So we must compute the expected belief



39

Resulting Value Function
n The four possible combinations yield the 

following function which then can be simplified 
and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)

\bar{V}1(b)
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Increasing the Time Horizon
n When the agent selects u3 its state may change. 
n When computing the value function, we have to take 

these potential state changes into account.

P(x=x1 after executing u3)

P(x=x1 originally)
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Resulting	Value	Function	after	executing	u3

Taking	the	state	transitions	into	account,	we	finally	obtain.
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Value Function after executing u3

\bar{V}1(b)

\bar{V}1(b|u3)

P(x=x1 after executing u3)

P(x=x1 originally)
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Value Function for T=2

n Taking into account that the agent can 
either directly perform u1 or u2 or first u3 and 
then u1 or u2, we obtain (after pruning)
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Graphical Representation of V2(b)

u1 optimal u2 optimal

unclear

outcome of 
measuring is 
important 
here
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Deep Horizons
n We	have	now	completed	a	full	backup	in	belief	space.
n This	process	can	be	applied	recursively.	
n The	value	functions	for	T=10	and	T=20	are
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Deep Horizons and Pruning



48

Why Pruning is Essential
n Each update introduces additional linear 

components to V.
n Each measurement squares the number of 

linear components. 
n Thus, an unpruned value function for T=20 includes 

more than 10547,864 linear functions.  
n At T=30 we have 10561,012,337 linear functions.
n The pruned value functions at T=20, in comparison, 

contains only 12 linear components.
n The combinatorial explosion of linear components in 

the value function are the major reason why 
exact solution of POMDPs is usually impractical
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POMDP Approximations

n Point-based value iteration

n QMDPs

n AMDPs
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Point-based Value Iteration

n Maintains a set of example beliefs

n Only considers constraints that 
maximize value function for at least 
one of the examples
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Point-based Value Iteration

Exact value function                 PBVI

Value functions for T=30
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QMDPs

n QMDPs only consider state
uncertainty in the first step

n After that, assume that the world is
fully observable.
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POMDP Summary

n POMDPs	compute	the	optimal	action	in	partially	
observable,	stochastic	domains.

n For	finite	horizon	problems,	the	resulting	value	
functions	are	piecewise	linear	and	convex.	

n In	each	iteration	the	number	of	linear	
constraints	grows	exponentially.

n Until	recently,	POMDPs	only	applied	to	very	
small	state	spaces	with	small	numbers	of	
possible	observations	and	actions.
n But	with	PBVI,	|S|	=	millions	


