Planning to Control Crowd-Sourced Workflows

Daniel S. Weld University of Washington

(Joint Work with Jonathan Bragg, Lydia Chilton, Peng Dai, Shih-Wen Huang, James Landay, Chris Lin, Angli Liu, Andrey Kolobov, Mausam & Stephen Soderland)

Jonathan Bragg

Lydia Chilton

Peng Dai

Shih-Wen Huang

James Landay

Chris Lin

Thanks

Angli Liu

Mausam

Stephen Soderland

Kolobov

Google

Crowdsourcing

- Performing work by **soliciting effort** from many people
- Combining the efforts of volunteers/part-time workers (each contributing a small portion) to produce a large or significant result

Crowdsourcing Successes

190 M reviews of 4.4 M businesses

Answers to 7.1 M prog. questions

Universal reference for anything

Citizen Science

800,000 volunteers – Hubble images Discovered "Hanny's Voorwerp" black-hole "Pea galaxies"

Crowdsourced bird count & identification Migration shift -> effect of climate change

Game to find 3D structure of proteins. Solved 15 year outstanding AIDS puzzle

Labor Marketplaces Will Grow to \$5B by 2018 [Staffing Industry Analysts]

- 2.7 million workers •
- 540,000 requestors \bullet
- 35M hours worked in 2012 \bullet

Al in Crowdsourcing

Collective assessment

belief propagation mean field approximation variational inference independent Bayes classifier hierarchical clustering **Bayesian bias mitigation Mallows model** two coin model **Bayes net Bayesian aggregation** majority vote **Chinese restaurant process HybridConfusion** EM gold questions ordinal-discrete mixture model multidimensional wisdom of crowds temporal likelihood mutual information minimax conditional entropy convex objective function open source datasets

Al in Crowdsourcing

- Collective assessment
 - State estimation/tracking
 - passive

The Rest of Crowdsourcing

control of simple tasks

tal neoretic contraint optimize redundancy for best quality-cost trade

complex tasks

- optimize workflows; pick the BEST

task routing

finding the right workers/

make workers skilled

- training; when? how much?

[Little et al, 2010]

[Little et al, 2010]

[Little et al, 2010]

[Little et al, 2010]

First version

A parial view of a pocket calculator together with some coins and a pen.

Version after 8 iterations

A CASIO multi-function, solar powered scientific calculator.

A blue ball point pen with a blue rubber grip and the tip extended.

Six British coins; two of £1 value, three of 20p value and one of 1p value.

Seems to be a theme illustration for a brochure or document cover treating finance - probably personal finance.

De yohand witting Auch nor

We sweet work Room golden som with not in is a bit ton pary in to whe has god. last aidet the noting

"You (misspelled) (several) (words). Please spellcheck your work next time. I also notice a few grammatical mistakes. Overall your writing style is a bit too phoney. You do make some good (points), but they got lost amidst the (writing). (signature)"

According to our ground truth, the highlighted words should be "flowery", "get", "verbiage" and "B-" respectively.

Controller for a Task

Artificial Intelligence 101

Output:

Construct *policy*, π : S \rightarrow A, that chooses best action for each state I.e., actions that *maximize expected reward* – *costs* over time

While *learning* action & reward probabilities (Reinforcement learning)

Output:

Construct *policy*, π : S \rightarrow A, that chooses best action for each state I.e., actions that *maximize expected reward* – *costs* over time

While *learning* action & reward probabilities (Reinforcement learning)

Solving the POMDP

Constructing the policy, π , to choose the best action

- Many algorithms
 - Point-based methods
 - UCT on discretized space
 - Lookahead search with beta distribution belief states

 $Q^{*}(s, a) = \sum_{s'} P(s' | s, a) [R(s, a, s') + \gamma Max_{a} Q^{*}(s, a)]$

- Exploration / exploitation problem
 - $-\varepsilon$ -greedy
 - UCB / Multi-armed bandit

From

То

(Hidden) **World State**

<x,y> coords

Actions

Move Grasp

Costs

Power used

Reward

Robot figure from Dan Klein & Pieter Abbeel - UC Berkeley CS188: http://ai.berkeley.edu.]

From

То

(Hidden) Quality $Q_1, Q_2 \in (0,1)$ <x,y> coords World State Actions Move Improve caption task Grasp Vote best caption Costs Power used \$\$ paid to workers F(quality returned)

Reward

Robot figure from Dan Klein & Pieter Abbeel - UC Berkeley CS188: http://ai.berkeley.edu.]

Comparison

[Dai, Lin, Mausam, Weld AlJ'13]

40 images, same average cost

Controlling quality: POMDP 30% cheaper

Allocation of Human Labor

Human Labor Redirected

