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Logistics

§ No	class	on	Tues	2/28	
§ No	final	exam
§ Default	project	(email	me	by	Fri	if	you	wish	something	else)
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Outline

§ HMM	Forward	Algorithm	for	Filtering	(aka	Monitoring)
§ HMM	Particle	Filter	Representation	&	Filtering
§ Dynamic	Bayes	Nets
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Hidden	Markov	Model:	Example

§ An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Observations:

Aka	“evidence,”	“emissions”
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Filtering (aka	Monitoring)

§ The	task	of	tracking	the	agent’s	belief	state,	B(x),	over	time
§ B(x)	=	distribution	over	world	states;	represents	agent	knowledge
§ We	start	with	B(X)	in	an	initial	setting,	usually	uniform
§ As	time	passes,	or	we	get	observations,	we	update	B(X)

§ Many	algorithms	for	this:
§ Exact	probabilistic	inference
§ Particle	filter	approximation
§ Kalman filter	(a	method	for	handling	continuous	Real-valued	random	vars)

§ invented	in	the	60’for	Apollo	Program	– real-valued	state,	Gaussian	noise



HMM	Examples

§ Robot	tracking:
§ States	(X)	are	positions	on	a	map	(continuous)
§ Observations	(E)	are	range	readings	(continuous)

X2

E1

X1 X3 X4

E1 E3 E4



Example:	Robot	Localization

T=1
Sensor	model:	never	more	than	1	mistake

Motion	model:	may	not	execute	action	with	small	prob.

10Prob

Example from Michael 
Pfeiffer



Example:	Robot	Localization

t=1

10Prob



Example:	Robot	Localization

t=2

10Prob



Example:	Robot	Localization

t=3

10Prob



Example:	Robot	Localization

t=4

10Prob



Example:	Robot	Localization

t=5

10Prob



Ghostbusters	HMM

§ X	=	ghost	location:	x11,	… x33
§ Ignore	pacman location	for	now	– suppose	lower	left	x11

x13 x23

x12 x22

x33

x23

x11 x21 x31

P(X1)
X2

E1

X1 X3 X4

E1 E3 E4

§ How	specify	HMM?



Ghostbusters	HMM

§ X	=	ghost	locations:	x11,	… x33
§ Ignore	pacman location	for	now	– suppose	lower	left	x11
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§ How	specify	HMM?
§ P(Xinitial)	=	uniform
§ P(Xt+1 |	Xt)	=	

A	big	9	x	9	table.	E.g.		P(Xt+1 =	x33 |	Xt =	x33),	…,	P(Xt+1 =	x11 |	Xt =	x11)	



Ghostbusters	HMM

§ X	=	ghost	locations:	x11,	… x33
§ Ignore	pacman location	for	now	– suppose	lower	left	x11
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§ How	specify	HMM?
§ P(Xinitial)	=	uniform
§ P(Xt+1 |	Xt)	=		A	big	9	x	9	table.	E.g.		P(Xt+1 =	x33 |	Xt =	x33),	…,	P(Xt+1 =	x11 |	Xt =	x11)
§ P(Et |	Xt)	=	also	a	big	table:	4	sonar	colors	x	9	ghost	positions	x	more	if	include	PM	pos



Ghostbusters	HMM
§ P(X1)	=	uniform
§ P(X’|X)	=	ghosts	usually	move	clockwise,	

but	sometimes	move	in	a	random	direction	or	stay	put
§ P(E|X)	=	same	sensor	model	as	before:

red means	probably	close,	green means	likely	far	away.
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This is part of a schema - must specify for other distances

Etc…



Filtering (aka	Monitoring)

§ Filtering,	or	monitoring,	is	the	task	of	tracking	the	distribution	B(X)
(called	“the	belief	state”)	over	time

§ We	start	with	B0(X)	in	an	initial	setting,	usually	uniform

§ We	update	Bt(X)																							computing	Bt+1(X)
1. As	time	passes,	and	 using	prob model	of	how	ghosts	move
2. As	we	get	observations using	prob model	of	how	noisy	sensors	work



Forward	Algorithm

§ t =	0
§ B(Xt)	=	initial	distribution
§ Repeat	forever

§ B’(Xt+1)	=	Simulate	passage	of	time	from	B(Xt)
§ Observe	et+1
§ B(Xt+1)	=	Update	B’(Xt+1) based	on	probability	of	et+1
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Passage	of	Time

§ Assume	we	have	current	belief	P(X	|	evidence	to	date)

§ Then,	after	one	time	step	passes:

§ Basic	idea:	beliefs	get	“pushed” through	the	transitions
§ With	the	“B” notation,	we	have	to	be	careful	about	what	time	step	t	the	belief	is	about,	and	what	

evidence	it	includes
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Example:	Passage	of	Time

§ As	time	passes,	uncertainty	“accumulates”

T	=	1 T	=	2 T	=	5

(Transition	model:	ghosts	usually	go	clockwise)



Observation
§ Assume	we	have	current	belief	P(X	|	previous	evidence):

§ Then,	after	evidence	comes	in:

§ Or,	compactly:

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

§ Basic	idea:	beliefs	“reweighted”	
by	likelihood	of	evidence

§ Unlike	passage	of	time,	we	have	
to	normalize

P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)P (Xt+1, et+1|e1:t)/P (et+1|e1:t)B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)=

E1

X1

Defn cond prob

Defn cond prob

Independence



Normalization	to	Account	for	Evidence

X E P
rain U 0.4
rain - 0.1
sun U 0.2
sun - 0.3

X P
rain 0.67
sun 0.33

X E P
rain U 0.4
sun U 0.2

SELECT the	joint	
probabilities	
matching	the	
evidence															

(U	in	this	case)

NORMALIZE	the	
selection

(make	it	sum	to	one)

Since	could	have	seen	other	evidence,	we	normalize	by	dividing	by	the	
probability	of	the	evidence	we	did see	(in	this	case	dividing	by	0.6)…



Example:	Observation

§ As	we	get	observations,	beliefs	get	reweighted,	uncertainty	“decreases”

Before	observation After	observation



Example:	Weather	HMM

Umbr1	=	T Umbr2	=	T
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Example:	Weather	HMM

Umbr1	=	T Umbr2	=	T

Rain0 Rain1 Rain2

B(x0=r)	=	0.5
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B’(x1=r)  =  P(x1=r | x0=r) * 0.5  +  P(x1=r | x0=s) * 0.5
=  0.8*0.5                       +  0.6*0.5
=  0.7

B(x1=r)	∝ 0.9	*	0.7	=	0.63
B(x1=s)	∝ 0.3	*	0.3	=	0.09	

Divide	by	0.72	(=0.63+0.09)	to	normalize
B(x1=r)	=0.63/0.72	=	0.875
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Example:	Weather	HMM

Umbr1	=	T Umbr2	=	T

Rain0 Rain1 Rain2

B(x0=r)	=	0.5
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B’(x1=r) =  0.7

B(x1=r)	=	0.875

B’(x2=r)  =  P(x2=r | x1=r)*0.875  +  P(x2=r | x1=s)*0.125
=  0.8*0.875                     +  0.6*0.125
=  0.775



Example:	Weather	HMM

Umbr1	=	T Umbr2	=	T

Rain0 Rain1 Rain2

B(x0=r)	=	0.5

P(R1 )
0.5
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t
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B’(x1=r) =  0.7

B(x1=r)	=	0.875

B’(x2=r)  =  P(x2=r | x1=r)*0.875  +  P(x2=r | x1=s)*0.125
=  0.8*0.875                     +  0.6*0.125
=  0.775

B(x1=r)	∝ 0.9	*	0.775	=	0.6975
B(x1=s)	∝ 0.3	*	0.225	=	0.0675	

Divide	by	0.765	to	normalize
B(x1=r)	=	0.912

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)



Video	of	Demo	Pacman – Sonar	(with	beliefs)



Summary:	Online	Belief	Updates

Every	time	step,	we	start	with	current	P(X	|	evidence)
1.	We	update	for	time:

2.	We	update	for	evidence:

The	forward	algorithm	does	both	at	once	(and	doesn’t	normalize)
Computational	complexity?

X2X1

X2

E2
O(X2	+XE)	time	&	O(X+E)	space



Particle	Filtering



Particle	Filtering	Overview

§ Approximation	technique	to	solve	filtering	problem
§ Represents	P	distribution	with	samples
§ Filtering	still	operates	in	two	steps

§ Elapse	time
§ Incorporate	observations

§ (But	this	part	has	two	sub-steps:	weight	&	resample)
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Particle	Filtering

§ Sometimes	|X|	is	too	big	to	use	exact	inference
§ |X|	may	be	too	big	to	even	store	B(X)
§ E.g.	X	is	continuous

§ Solution:	approximate	inference
§ Track	samples	of	X,	not	exact	distribution	of	values
§ Samples	are	called	particles
§ Time	per	step	is	linear	in	the	number	of	samples
§ But:	number	needed	may	be	large
§ In	memory:	list	of	particles,	not	states

§ Particle	is	just	new	name	for	sample

§ This	is	how	robot	localization	works	in	practice



Remember…

An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Emissions:



Here’s	a	Single	Particle
§ It	represents	a	hypothetical	state	where	the	robot	is	in	(1,2)



Particles Approximate	Distribution
§ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)

§ Generally,	N	<<	|X|

Particles: (3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

P(x)
Distribution

P(x=<3,3>) = 5/10 = 50%



Particle	Filtering

A	more	compact	view	overlays the	samples:

Encodes à

0.0 0.2

0.1 0.0

0.5

0.2

0.0 0.2 0.5



P(x)
Distribution

Another	Example

In	the	weather	HMM,	suppose	we	decide	to	approximate	the	distributions	
with	5	particles.	To	initialize	the	filter,	we	draw	5	samples	from	B(x0=r)	=	0.5	
and	we	might	get	the	following	set	of	particles:

47
Not	such	a	good	approximation,	but	that’s	life.

Particles: S
R
R
S
S



Representation:	Particles
§ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)

§ Generally,	N	<<	|X|
§ Storing	map	from	X	to	counts	would	defeat	the	purpose

§ P(x)	approximated	by	(number	of	particles	with	value	x)	/	N
§ More	particles,	more	accuracy

§ What	is	P((2,2))?

§ In	fact,	many	x	may	have	P(x)	=	0!	

Particles: (3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

0/10 = 0%



Particle	Filtering	Algorithm

1. Elapse	Time
2. Observe

2a.		Downweight samples	based	on	evidence
2b.	Resample

50



Particle	Filtering:	Elapse	Time

§ For	each	particle,	x,	move	x	by	sampling	its	next	
position	from	the	transition	model

§ This	is	like	prior	sampling	– samples’ frequencies	
reflect	the	transition	probabilities

§ Here,	most	samples	move	clockwise,	but	some	move	in	
another	direction	or	stay	in	place

§ This	captures	the	passage	of	time
§ If	enough	samples,	close	to	exact	values	before	and	

after	(consistent)

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Aka:    sample(P(xt+1 | xt))



§ Slightly	trickier:
§ Don’t	sample	observation,	fix	it

§ Similar	to	likelihood	weighting,	
§ For	each	particle,	x,	down-weight	x	
based	on	the	evidence

§ As	before,	the	probabilities	don’t	sum	to	
one,	since	all	have	been	downweighted
(in	fact	they	now	sum	to	(N	times)	an	
approximation	of	P(e))

Particle	Filtering:	Observe

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle	Filtering	Observe	Part	II:	Resample

§ Rather	than	tracking	weighted	samples,	we	
resample

§ N	times,	we	choose	from	our	weighted	sample	
distribution	(i.e.	draw	with	replacement)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(3,1)
(3,2)
(3,1)
(3,2)

§ This	is	equivalent	to	renormalizing	the	distribution

§ Now	the	update	is	complete	for	this	time	step,	
continue	with	the	next	one

(3,2) (2,3) (3,2)

w=.9 w=.2 w=.9

(2,2)

w=.4

Draw random number in  [0, 5.3]



Particle	Collapse	

§ Some	challenges…

§ What	if	weights	of	all	particles	go	to	zero?
§ What	if	converge	to	a	single	particle?
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Recap:	Particle	Filtering
§ Particles:	track	samples	of	states	rather	than	an	explicit	distribution

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos:	ghostbusters particle	filtering	(L15D3,4,5)]



Which	Algorithm?
Particle filter, uniform initial beliefs, 25 particles



Which	Algorithm?
Particle filter, uniform initial beliefs, 300 particles



Which	Algorithm?
Exact filter, uniform initial beliefs



Robot	Localization

§ In	robot	localization:
§ We	know	the	map,	but	not	the	robot’s	position
§ Observations	may	be	vectors	of	range	finder	readings
§ State	space	and	readings	are	typically	continuous	(works	

basically	like	a	very	fine	grid)	and	so	we	cannot	store	B(X)
§ Particle	filtering	is	a	main	technique



Particle	Filter	Localization	(Sonar)

[Video:	global-sonar-uw-annotated.avi]



Particle	Filter	Localization	(Laser)

[Video:	global-floor.gif]



Robot	Mapping
§ SLAM:	Simultaneous	Localization	And	Mapping

§ We	do	not	know	the	map	or	our	location
§ State	consists	of	position	AND	map!
§ Main	techniques:	Kalman filtering	(Gaussian	HMMs)	

and	particle	methods

DP-SLAM,	Ron	Parr
[Demo:	PARTICLES-SLAM-mapping1-new.avi]



Particle	Filter	SLAM	– Video	1

[Demo:	PARTICLES-SLAM-mapping1-new.avi]



Particle	Filter	SLAM	– Video	2

[Demo:	PARTICLES-SLAM-fastslam.avi]



Scaling	to	Large	|X|

§ 1	Ghost:	k	(eg 9)	possible	positions	in	maze
§ 2	Ghosts:	k2 combinations

§ N	Ghosts:	kN combinations

70



HMM Conditional	Independence

§ HMMs	have	two	important	independence	properties:
§ Markov	hidden	process:	future	state	independent	of	past	given	current	state	
§ Current	observation	independent	of	all	else	given	current	state

X2

E1

X1 X3 X4

E1 E3 E4



What	about	Conditional	Independence	in	Snapshot

§ Can	we	do	something	here?
§ Factor	X	into	product	of	(conditionally)	independent	random	vars?

§ Maybe	also	factor	E	

X3

E3



Yes!		with	Bayes	Nets

X3



Dynamic	Bayes Nets



Dynamic	Bayes	Nets	(DBNs)
§ We	want	to	track	multiple	variables	over	time,	using	

multiple	sources	of	evidence

§ Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	time

§ Variables	from	time	t can	condition	on	those	from	t-1

§ Dynamic	Bayes	nets	are	a	generalization	of	HMMs

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t	=	1 t	=	2

G3
a

E3a E3b

G3
b

t	=	3



DBN	Particle	Filters

§ A	particle	is	a	complete	sample	for	a	time	step

§ Initialize:	Generate	prior	samples	for	the	t=1	Bayes	net
§ Example	particle:	G1

a	=	(3,3)	G1
b	=	(5,3)	

§ Elapse	time:	Sample	a	successor	for	each	particle	
§ Example	successor:	G2

a	=	(2,3)	G2
b	=	(6,3)

§ Observe:	Weight	each	entire sample	by	the	likelihood	of	the	evidence	conditioned	on	
the	sample
§ Likelihood:	P(E1a	|G1

a	)	*	P(E1b	|G1
b	)	

§ Resample:	Select	prior	samples	(tuples	of	values)	in	proportion	to	their	likelihood


