CSE 573: Artificial Intelligence Hidden Markov Models

Logistics

- No class on Tues 2/28
- No final exam
- Default project (email me by Fri if you wish something else)

Outline

- HMM Forward Algorithm for Filtering (aka Monitoring)
- HMM Particle Filter Representation \& Filtering
- Dynamic Bayes Nets

Hidden Markov Model: Example

- An HMM is defined by:
- Initial distribution:
- Transitions:
- Observations:

Aka "evidence," "emissions"

$$
P\left(X_{1}\right)
$$

$$
P\left(X_{t} \mid X_{t-1}\right)
$$

$$
P(E \mid X)
$$

Filtering (aka Monitoring)

- The task of tracking the agent's belief state, $B(x)$, over time
- $B(x)=$ distribution over world states; represents agent knowledge
- We start with $B(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- Many algorithms for this:
- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
- invented in the 60'for Apollo Program - real-valued state, Gaussian noise

HMM Examples

- Robot tracking:
- States (X) are positions on a map (continuous)
- Observations (E) are range readings (continuous)

Example: Robot Localization

Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Prob

$t=1$

Example: Robot Localization

Prob | | |
| :--- | :--- |
| | |
| | $t=2$ |

Example: Robot Localization

Prob

$\mathrm{t}=3$

Example: Robot Localization

Prob

$\mathrm{t}=4$

Example: Robot Localization

Prob

$\mathrm{t}=5$

Ghostbusters HMM

- $X=$ ghost location: $x_{11}, \ldots x_{33}$
- Ignore pacman location for now - suppose lower left x_{11}

- How specify HMM?

Ghostbusters HMM

- $\mathrm{X}=$ ghost locations: $\mathrm{x}_{11}, \ldots \mathrm{X}_{33}$
- Ignore pacman location for now - suppose lower left x_{11}

Etc...

A big 9×9 table. E.g. $P\left(X_{t+1}=x_{33} \mid X_{t}=x_{33}\right), \ldots, P\left(X_{t+1}=x_{11} \mid X_{t}=x_{11}\right)$

Ghostbusters HMM

- $X=$ ghost locations: $x_{11}, \ldots x_{33}$
- Ignore pacman location for now - suppose lower left x_{11}

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(\mathrm{X}_{1}\right)$		

- How specify HMM?
- $P\left(X_{\text {initial }}\right)=$ uniform
- $P\left(X_{t+1} \mid X_{t}\right)=$ A big $9 x 9$ table. E.g. $P\left(X_{t+1}=x_{33} \mid X_{t}=x_{33}\right), \ldots, P\left(X_{t+1}=x_{11} \mid X_{t}=x_{11}\right)$
- $P\left(E_{t} \mid X_{t}\right)=$ also a big table: 4 sonar colors $x 9$ ghost positions x more if include $P M$ pos

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X^{\prime} \mid X\right)=$ ghosts usually move clockwise,
but sometimes move in a random direction or stay put
- $P(E \mid X)=$ same sensor model as before:
red means probably close, green means likely far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(\mathrm{X}_{1}\right)$		

Etc...

P(E|X)

$P($ red \| 3)	P (orange \| 3)	$P($ yellow \| 3)	P (green \| 3)
0.05	0.15	0.5	0.3

This is part of a schema - must specify for other distances

Filtering (aka Monitoring)

- Filtering, or monitoring, is the task of tracking the distribution $B(X)$ (called "the belief state") over time
- We start with $B_{0}(X)$ in an initial setting, usually uniform
- We update $B_{t}(X)$

1. As time passes, and
2. As we get observations
computing $B_{t+1}(X)$
using prob model of how ghosts move
using prob model of how noisy sensors work

Forward Algorithm

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- $\mathrm{t}=0$
- $\mathrm{B}\left(\mathrm{X}_{\mathrm{t}}\right)$ = initial distribution
- Repeat forever
- $\mathrm{B}^{\prime}\left(\mathrm{X}_{\mathrm{t}+1}\right)=$ Simulate passage of time from $\mathrm{B}\left(\mathrm{X}_{\mathrm{t}}\right)$
- Observe $\mathrm{e}_{\mathrm{t}+1}$
- $B\left(X_{t+1}\right)=$ Update $B^{\prime}\left(X_{t+1}\right)$ based on probability of e_{t+1}

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:
$B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)$
- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

T = 1

T = 2
(Transition model: ghosts usually go clockwise)

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence $)$:

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

Defn cond prob

$$
\begin{array}{ll}
=P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) & \text { Defn cond prob } \\
=P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad / P\left(e_{t+1} \mid e_{1: t}\right) & \text { Independence }
\end{array}
$$

- Or, compactly:

$$
B\left(X_{t+1}\right)=P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right) / P\left(e_{t+1} \mid e_{1: t}\right)
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to normalize

Normalization to Account for Evidence

X	E	P
rain	U	0.4
rain	-	0.1
sun	U	0.2
sun	-	0.3

Since could have seen other evidence, we normalize by dividing by the probability of the evidence we did see (in this case dividing by 0.6)...

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Example: Weather HMM

$$
B^{\prime}\left(x_{1}=r\right)=P\left(x_{1}=r \mid x_{0}=r\right) * 0.5+P\left(x_{1}=r \mid x_{0}=s\right) * 0.5
$$

$$
=0.8^{*} 0.5
$$

$$
+0.6^{*} 0.5
$$

$$
=0.7
$$

$B\left(x_{0}=r\right)=0.5$

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

R_{t-1}	$P\left(R_{t} \mid R_{t-1}\right)$
t	0.8
f	0.6

R_{t}	$P\left(U_{t} \mid R_{t}\right)$
t	0.9
f	0.3

Example: Weather HMM

$$
\begin{aligned}
& B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right) \\
& B\left(X_{t+1}\right) \propto X_{t+1} \\
& P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
\end{aligned}
$$

R_{t-1}	$P\left(R_{t} \mid R_{t-1}\right)$
t	0.8
f	0.6

R_{t}	$P\left(U_{t} \mid R_{t}\right)$
t	0.9
f	0.3

Example: Weather HMM

R_{t-1}	$P\left(R_{t} \mid R_{t-1}\right)$
t	0.8
f	0.6

R_{t}	$P\left(U_{t} \mid R_{t}\right)$
t	0.9
f	0.3

Example: Weather HMM

Video of Demo Pacman - Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current $P(X \mid$ evidence $)$

1. We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

2. We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

The forward algorithm does both at once (and doesn't normalize)
Computational complexity?

$$
O\left(X^{2}+X E\right) \text { time \& } O(X+E) \text { space }
$$

Particle Filtering

Particle Filtering Overview

- Approximation technique to solve filtering problem
- Represents P distribution with samples
- Filtering still operates in two steps
- Elapse time
- Incorporate observations
- (But this part has two sub-steps: weight \& resample)

Particle Filtering

- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of \boldsymbol{X}, not exact distribution of values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- Particle is just new name for sample
- This is how robot localization works in practice

Remember...

An HMM is defined by:

- Initial distribution:
- Transitions:
- Emissions:

Here's a Single Particle

- It represents a hypothetical state where the robot is in (1,2)

Particles Approximate Distribution

- Our representation of $\mathrm{P}(\mathrm{X})$ is now a list of N particles (samples)
- Generally, $N \ll|X|$
$P(x)$
Distribution

Particle Filtering

A more compact view overlays the samples:

Encodes \rightarrow

0.0	0.2	0.5
0.1	0.0	0.2
0.0	0.2	0.5

Another Example

In the weather HMM, suppose we decide to approximate the distributions with 5 particles. To initialize the filter, we draw 5 samples from $B\left(x_{0}=r\right)=0.5$ and we might get the following set of particles:

$$
P(x)
$$

Distribution

Particles:

Not such a good approximation, but that's life.

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the purpose

- $\mathrm{P}(\mathrm{x})$ approximated by (number of particles with value \mathbf{x}) / \mathbf{N}
- More particles, more accuracy
- What is $\mathrm{P}((2,2))$? $0 / 10=0 \%$
- In fact, many x may have $P(x)=0$!

Particle Filtering Algorithm

1. Elapse Time
2. Observe

2a. Downweight samples based on evidence
2b. Resample

Particle Filtering: Elapse Time

- For each particle, x, move x by sampling its next position from the transition model

$$
\begin{aligned}
& x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right) \\
& \text { Aka: } \quad \operatorname{sample}\left(P\left(x_{t+1} \mid x_{t}\right)\right)
\end{aligned}
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting,
- For each particle, x, down-weight x based on the evidence

$$
\begin{gathered}
w(x)=P(e \mid x) \\
B(X) \propto P(e \mid X) B^{\prime}(X)
\end{gathered}
$$

- As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)
$(3,2) \quad w=.9$

Particle Filtering Observe Part II: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)

$$
\text { Draw random number in }[0,5.3] \quad \sum w_{i}=5.3
$$

- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step,
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) w=.9$
$(2,2) w=.4$
(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,1)$
$(3,2)$
 continue with the next one
$(3,1)$
$(3,2)$

Particle Collapse

- Some challenges...
- What if weights of all particles go to zero?
- What if converge to a single particle?

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Weight

Particles:
$(3,2) w=.9$
$(2,3) \quad w=.2$
$(3,2) \quad w=.9$
$(3,1) w=.4$
$(3,3) \quad w=.4$
$(3,2) \quad w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) \quad w=.9$
$(2,2) \quad w=.4$

Resample

(New) Particles:
$(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

SCORE: 0

Which Algorithm?

Exact filter, uniform initial beliefs

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Global localization with sonar sensors

40000

Particle Filter Localization (Laser)

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]

Scaling to Large $|X|$

- 1 Ghost: k (eg 9) possible positions in maze
- 2 Ghosts: k^{2} combinations

- N Ghosts: k^{N} combinations

HMM Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process: future state independent of past given current state
- Current observation independent of all else given current state

What about Conditional Independence in Snapshot

- Can we do something here?
- Factor X into product of (conditionally) independent random vars?

- Maybe also factor E

$$
Q^{\circ} \mathrm{E}
$$

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $P\left(E_{1}{ }^{a} \mid G_{1}{ }^{a}\right)$ * $P\left(E_{1}{ }^{b} \mid G_{1}{ }^{\mathrm{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

