CSE 573: Artificial Intelligence Hidden Markov Models

[Many of these slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Logistics

- No class on Tues 2/28
- No final exam
- Default project (email me by Fri if you wish something else)

Outline

3

- HMM Forward Algorithm for Filtering (aka Monitoring)
- HMM Particle Filter Representation & Filtering
- Dynamic Bayes Nets

Hidden Markov Model: Example

Filtering (aka Monitoring)

The task of tracking the agent's belief state, B(x), over time

- B(x) = distribution over world states; represents agent knowledge
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

Many algorithms for this:

- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
 - invented in the 60'for Apollo Program real-valued state, Gaussian noise

HMM Examples

- Robot tracking:
 - States (X) are positions on a map (continuous)
 - Observations (E) are range readings (continuous)

Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.

t=1

1

t=2

Prob

0

t=3

1

Prob

0

t=4

1

t=5

- X = ghost location: x₁₁, ... x₃₃
- Ignore pacman location for now suppose lower left x₁₁

x ₁₃	x ₂₃	X 33		
x ₁₂	x ₂₂	x ₂₃		
x ₁₁	x ₂₁	x ₃₁		
P(X ₁)				

How specify HMM?

- X = ghost locations: x₁₁, ... x₃₃
- Ignore pacman location for now suppose lower left x₁₁

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	
F	P(X ₁)		
1/6	1/6	1/2	
0	1/6	0	Etc
0	0	0	

How specify HMM?

- P(X_{initial}) = uniform
- $P(X_{t+1} | X_t) = A big 9 x 9 table. E.g. P(X_{t+1} = x_{33} | X_t = x_{33}), ..., P(X_{t+1} = x_{11} | X_t = x_{11})$
- P(E_t | X_t) = also a big table: 4 sonar colors x 9 ghost positions x more if include PM pos

- P(X₁) = uniform
- P(X' | X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
- P(E|X) = same sensor model as before:
 red means probably close, green means likely far away.

1/9	1/9	1/9		
1/9	1/9	1/9		
1/9	1/9	1/9		
P(X ₁)				

Etc...

	P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
P(E X)	0.05	0.15	0.5	0.3

This is *part* of a *schema* - must specify for other distances

Filtering (aka Monitoring)

- Filtering, or monitoring, is the task of tracking the distribution B(X) (called "the belief state") over time
- We start with B₀(X) in an initial setting, usually uniform
- We update B_t(X)
 - 1. As time passes, and
 - 2. As we get observations

computing B_{t+1}(X)

using prob model of how ghosts move

using prob model of how noisy sensors work

Forward Algorithm

 $B(X_t) = P(X_t | e_{1:t})$

- t = 0
- B(X_t) = initial distribution
- Repeat forever
 - B'(X_{t+1}) = Simulate passage of time from B(X_t)
 - Observe e_{t+1}
 - B(X_{t+1}) = Update B'(X_{t+1}) based on probability of e_{t+1}

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

Or compactly:

1

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01 <0.01 1.00 <0.01 <0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	<0.01	<0.01	1.00	<0.01	<0.01	<0.01
<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

T = 1

	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

T = 2

(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
T = 5					

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$
 Definition of problem

$$= P(e_{t+1}|e_{1:t}, X_{t+1}) P(X_{t+1}|e_{1:t}) \ / P(e_{t+1}|e_{1:t}) \ \text{Defn cond prob}$$

 $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$ Independence

Or, compactly:
 B(X_{t+1}) = P(e_{t+1}|X_{t+1})B'(X_{t+1}) / P(e_{t+1}|e_{1:t})
 Basic idea: beliefs "reweighted" by likelihood of evidence
 Unlike passage of time, we have to normalize

Normalization to Account for Evidence

Since could have seen other evidence, we normalize by dividing by the probability of the evidence we *did* see (in this case dividing by 0.6)...

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

Before observation

 $B(X) \propto P(e|X)B'(X)$

$B'(x_2=r) = P(x_2=r | x_1=r)*0.875 + P(x_2=r | x_1=s)*0.125$ = 0.8*0.875 + 0.6*0.125 $B'(x_1=r) = 0.7$ = 0.775 $B'(X_{t+1}) = \sum P(X'|x_t)B(x_t)$ x_t $B(x_1=r) = 0.875$ $B(x_0=r) = 0.5$ $P(R_t | R_{t-1})$ R_{t-1} Rain₀ 0.8 Rain₁ Rain₂ t f 0.6 $P(R_1)$ R_t $P(U_t | R_t)$ 0.5 $Umbr_2 = T$ $Umbr_1 = T$ 0.9 t f 0.3

Video of Demo Pacman – Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current P(X | evidence) 1. We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

2. We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize)

Computational complexity?

 $O(X^2 + XE)$ time & O(X+E) space

Particle Filtering

Particle Filtering Overview

41

- Approximation technique to solve filtering problem
- Represents P distribution with samples
- Filtering still operates in two steps
 - Elapse time
 - Incorporate observations
 - (But this part has two sub-steps: weight & resample)

Particle Filtering

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not exact distribution of values
 - Samples are called *particles*
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- Particle is just new name for *sample*
- This is how robot localization works in practice

Remember...

An HMM is defined by:

- Initial distribution:
- Transitions:
- Emissions:

Here's a Single Particle

It represents a hypothetical state where the robot is in (1,2)

Particles Approximate Distribution

Particle Filtering

A more compact view *overlays* the samples:

Encodes \rightarrow

0.0	0.2	0.5
0.1	0.0	0.2
0.0	0.2	0.5

Another Example

In the weather HMM, suppose we decide to approximate the distributions with 5 particles. To initialize the filter, we draw 5 samples from $B(x_0=r) = 0.5$ and we might get the following set of particles:

Not such a good approximation, but that's life.

Representation: Particles

• Our representation of P(X) is now a list of N particles (samples) Generally, N << |X|</p> Storing map from X to counts would defeat the purpose Particles: (3,3) P(x) approximated by (number of particles with value x) / N (2,3) (3,3)More particles, more accuracy (3,2)(3,3)What is P((2,2))? 0/10 = 0%(3,2)(1,2)(3,3) In fact, many x may have P(x) = 0! (3,3)(2,3)

Particle Filtering Algorithm

50

1. Elapse Time

2. Observe

- 2a. Downweight samples based on evidence
- 2b. Resample

Particle Filtering: Elapse Time

 For each particle, x, move x by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

Aka: sample($P(x_{t+1} | x_t)$)

- This is like *prior sampling* samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:

(3,3) (2,3) (3,3)

(3,2)

(3,3)

(3,2) (1,2) (3,3)

(3,3) (2,3)

Particles: (3,2) (2,3) (3,2) (3,1)

> (3,3) (3,2)

> (1,3)

(2,3) (3,2) (2,2)

Particle Filtering: Observe

(3,2)(2,3)

(3,2)

(3,1)(3,3)

(3,2)

(1,3)

(2,3)

(3,2)

(2,2)

Slightly trickier:

- Don't sample observation, fix it
 - Similar to likelihood weighting,
- For each particle, x, down-weight x based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering Observe Part II: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)

- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particle Collapse

- Some challenges...
- What if weights of all particles go to zero?
- What if converge to a single particle?

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Robot Localization

- In robot localization:
 - We know the map, but not the robot's position
 - Observations may be vectors of range finder readings
 - State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
 - Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]

Robot Mapping

SLAM: Simultaneous Localization And Mapping

- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]

Scaling to Large |X|

- I Ghost: k (eg 9) possible positions in maze
- 2 Ghosts: k² combinations
- N Ghosts: k^N combinations

HMM Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process: future state independent of past given current state
 - Current observation independent of all else given current state

What about Conditional Independence in Snapshot

- Can we do something here?
- Factor X into product of (conditionally) independent random vars?

Maybe also factor E

Yes! with Bayes Nets

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: **G**₁^a = (3,3) **G**₁^b = (5,3)
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: P(E₁^a | G₁^a) * P(E₁^b | G₁^b)
- **Resample:** Select prior samples (tuples of values) in proportion to their likelihood