CSE 573: Artificial Intelligence

Bayes' Net Teaser

(slides by Dan Weld)

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$ Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \dots \\ = \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$ Bayes rule $P(x|y) = \frac{P(y|x)}{P(y)}P(x)$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z: $X \perp \!\!\!\perp Y | Z$ if and only if: $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Probabilistic Inference

Probabilistic inference =

"compute a desired probability from other known probabilities (e.g. conditional from joint)"

- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables
- We want:

* Works fine with multiple query variables, too

$$P(Q|e_1\ldots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

Step 3: Normalize

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots, X_n})$$

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

- Computational problems?
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Sword of Conditional Independence!

Or, equivalently: $\forall x, y, z : P(x|z, y) = P(x|z)$

Bayes'Nets: Big Picture

Bayes' Nets

- Representation & Semantics
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes Nets = a Kind of Probabilistic Graphical *Model*

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Friction, Air friction, Mass of pulley, Inelastic string, ...

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly ... aka probabilistic graphical model
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, *acyclic* graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

В	Ε	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Bayes Nets Implicitly Encode Joint Distribution

-b

-b

-b

-b

+e

+e

-е

-е

+a

-a

+a

-a

0.29

0.71

0.001

0.999

$$P(+b, -e, +a, -j, +m) =$$

Bayes Nets Implicitly Encode Joint Distribution

Joint Probabilities from BNs

 Why are we guaranteed that setting results in a proper joint distribution?

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Chain rule (valid for all distributions):
- Assume conditional independences:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

$$P(x_i|x_1, \dots, x_{i-1}) = P(x_i| parents(X_i))$$

→ Consequence:
$$P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Every BN represents a joint distribution, but
- Not every distribution can be represented by a specific BN
 - The topology enforces certain conditional independencies

Causality?

• When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

 $P(x_i|x_1, \dots, x_{i-1}) = P(x_i|parents(X_i))$

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 - 2^N
- How big is an N-node net if nodes have up to k parents?

- Both give you the power to calculate
 - $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Inference in Bayes' Net

- Many algorithms for both exact and approximate inference
- Complexity often based on
 - Structure of the network
 - Size of undirected cycles
- Usually faster than exponential in number of nodes
- Exact inference
 - Variable elimination
 - Junction trees and belief propagation
- Approximate inference
 - Loopy belief propagation
 - Sampling based methods: likelihood weighting, Markov chain Monte Carlo
 - Variational approximation

Summary: Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes' nets compactly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Hidden Markov Models

Defines a joint probability distribution:

$$P(X_1, \dots, X_n, E_1, \dots, E_n) =$$

$$P(X_{1:n}, E_{1:n}) =$$

$$P(X_1)P(E_1|X_1) \prod_{t=2}^N P(X_t|X_{t-1})P(E_t|X_t)$$

Hidden Markov Models

- An HMM is defined by:
 - Initial distribution:
 - Transitions:
 - Emissions:

```
P(X_1)
P(X_t|X_{t-1})
P(E|X)
```

Conditional Independence

HMMs have two important independence properties:

Future independent of past given the present

Conditional Independence

HMMs have two important independence properties:

- Future independent of past given the present
- Current observation independent of all else given current state

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state

- Quiz: does this mean that observations are *independent* given no evidence?
 - [No, correlated by the hidden state]

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Ghostbusters HMM

- $P(X_1) = uniform$
- P(X' | X) = ghosts usually move clockwise, but sometimes move in a random direction or stay put
- P(E|X) = same sensor model as before:
 red means probably close, green means likely far away.

1/9	1/9	1/9		
1/9	1/9	1/9		
1/9	1/9	1/9		
P(X ₁)				

P(E|X) (One row for every value of X)

					P(X' X=<1,2	>)
,	Х	P(red x)	P(orange x)	P(yellow x)	P(green x)	
	2					
X)	3	0.05	0.15	0.5	0.3	
	4					

HMM Examples

Speech recognition HMMs:

- States are specific positions in specific words (so, tens of thousands)
- Observations are acoustic signals (continuous valued)

HMM Examples

- POS tagging HMMs:
 - State is the parts of speech tag for a specific word
 - Observations are words in a sentence (size of the vocabulary)

HMM Computations

- Given
 - parameters
 - evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for some t
 - Most probable explanation, for some t find

 $x^{*}_{1:t} = \operatorname{argmax}_{x_{1:t}} P(x_{1:t}|e_{1:t})$

• Smoothing, find $P(X_t|e_{1:n})$ for some t < n

Filtering (aka Monitoring)

The task of tracking the agent's belief state, B(x), over time

- B(x) is a distribution over world states repr agent knowledge
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

Many algorithms for this:

- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
 - invented in the 60' for Apollo Program real-valued state, Gaussian noise

HMM Examples

- Robot tracking:
 - States (X) are positions on a map (continuous)
 - Observations (E) are range readings (continuous)

Filtering (aka Monitoring)

- Filtering, or monitoring, is the task of tracking the distribution B_t(X) (called "the belief state") over time
- We start with B₀(X) in an initial setting, usually uniform
- We update B_t(X)
 - 1. As time passes, and
 - 2. As we get observations

computing B_{t+1}(X) using prob model of how ghosts move using prob model of how noisy sensors work

Filtering: Base Cases

Forward Algorithm

$$B(X_t) = P(X_t | e_{1:t})$$

- t = 0
- B(X_t) = initial distribution
- Repeat forever
 - B'(X_{t+1}) = Simulate passage of time from B(X_t)
 - Observe e_{t+1}
 - B(X_{t+1}) = Update B'(X_{t+1}) based on probability of e_{t+1}

Passage of Time

Assume we have current belief P(X | evidence to date)

 $B(X_t) = P(X_t | e_{1:t})$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

= $\sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$
= $\sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$

• Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t) B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 <0.01 <0.01 <0.01 <0.01 0.76 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

As time passes, uncertainty "accumulates"

T = 1

T = 2

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$
 Definition of prob

$$= P(e_{t+1}|e_{1:t}, X_{t+1}) P(X_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$
 Chain rule

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t}) / P(e_{t+1}|e_{1:t})$$
Independence
Or, compactly:
$$B(X_{t+1}) = P(e_{t+1}|X_{t+1})B'(X_{t+1}) / P(e_{t+1}|e_{1:t})$$
Basic idea: beliefs "reweighted"
by likelihood of evidence
Unlike passage of time, we have
to normalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

$B(X) \propto P(e|X)B'(X)$

Normalization to Account for Evidence

Since could have seen other evidence, we normalize by dividing by the probability of the evidence we *did* see (in this case dividing by 0.5)...

Pacman – Sonar (P5)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current P(X | evidence) 1. We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

*X*₂

 E_2

2. We update for evidence:

1

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

The forward algorithm does both at once (and doesn't normalize) Computational complexity?

O(X² +XE) time & O(X+E) space