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Probability	Recap
§ Conditional	probability

§ Product	rule

§ Chain	rule	

§ Bayes	rule

§ X,	Y	independent	if	and	only	if:

§ X	and	Y	are	conditionally	independent	given	Z:																										
if	and	only	if:



Probabilistic	Inference

§ Probabilistic	inference	=	
“compute	a	desired	probability	from	other	known	
probabilities	(e.g.	conditional	from	joint)”

§ We	generally	compute	conditional	probabilities	
§ P(on	time	|	no	reported	accidents)	=	0.90
§ These	represent	the	agent’s	beliefs given	the	evidence

§ Probabilities	change	with	new	evidence:
§ P(on	time	|	no	accidents,	5	a.m.)	=	0.95
§ P(on	time	|	no	accidents,	5	a.m.,	raining)	=	0.80
§ Observing	new	evidence	causes	beliefs	to	be	updated



Inference	by	Enumeration
§ General	case:

§ Evidence	variables:	
§ Query*	variable:
§ Hidden	variables: All	variables

*	Works	 fine	with	
multiple	query	
variables,	 too

§ We	want:

§ Step	1:	Select	the	
entries	consistent	
with	the	evidence

§ Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence

§ Step	3:	Normalize

⇥ 1

Z



§ Computational	problems?

§ Worst-case	time	complexity	O(dn)	

§ Space	complexity	O(dn)	to	store	the	joint	distribution

Inference	by	Enumeration



The	Sword	of	Conditional	Independence!
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Or, equivalently:



Bayes’Nets:	Big	Picture



Bayes’ Nets

§ Representation	&	Semantics

§ Conditional	Independences

§ Probabilistic	Inference
§ Learning	Bayes’ Nets	from	Data



Bayes	Nets	=	a	Kind	of	Probabilistic	Graphical	Model

§ Models	describe	how	(a	portion	of)	the	world	works

§ Models	are	always	simplifications
§ May	not	account	for	every	variable
§ May	not	account	for	all	interactions	between	variables
§ “All	models	are	wrong;	but	some	are	useful.”

– George	E.	P.	Box

§ What	do	we	do	with	probabilistic	models?
§ We	(or	our	agents)	need	to	reason	about	unknown	

variables,	given	evidence
§ Example:	explanation	(diagnostic	reasoning)
§ Example:	prediction	(causal	reasoning)
§ Example:	value	of	information

Friction, 
Air friction, 
Mass of pulley, 
Inelastic string, …



Bayes’ Nets:	Big	Picture

§ Two	problems	with	using	full	joint	distribution	tables	
as	our	probabilistic	models:
§ Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	

big	to	represent	explicitly
§ Hard	to	learn	(estimate)	anything	empirically	about	more	

than	a	few	variables	at	a	time

§ Bayes’ nets:	a	technique	for	describing	complex	joint	
distributions	(models)	using	simple,	local	
distributions	(conditional	probabilities)
§ More	properly	… aka	probabilistic	graphical	model
§ We	describe	how	variables	locally	interact
§ Local	interactions	chain	together	to	give	global,	indirect	

interactions
§ For	about	10	min,	we’ll be	vague	about	how	these	

interactions	are	specified



Example	Bayes’ Net:	Insurance



Bayes’ Net	Semantics



Bayes’ Net	Semantics

§ A	set	of	nodes,	one	per	variable	X

§ A	directed,	acyclic graph

§ A	conditional	distribution	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’ values

§ CPT:	conditional	probability	table

§ Description	of	a	noisy	“causal” process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities

P(A1 )  ….     P(An )



Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99



Bayes	Nets	Implicitly	Encode	Joint	Distribution
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ



Bayes	Nets	Implicitly	Encode	Joint	Distribution
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Joint	Probabilities	from	BNs

§ Why	are	we	guaranteed	that	setting

results	in	a	proper	joint	distribution?		

§ Chain	rule	(valid	for	all	distributions):	

§ Assume conditional	independences:	

à Consequence:

§ Every	BN	represents	a	joint	distribution,	but
§ Not	every	distribution	can	be	represented	by	a	specific	BN

§ The	topology	enforces	certain	conditional	independencies



Causality?

§ When	Bayes’ nets	reflect	the	true	causal	patterns:
§ Often	simpler	(nodes	have	fewer	parents)
§ Often	easier	to	think	about
§ Often	easier	to	elicit	from	experts

§ BNs	need	not	actually	be	causal
§ Sometimes	no	causal	net	exists	over	the	domain	

(especially	if	variables	are	missing)
§ E.g.	consider	the	variables	Traffic and	Drips
§ End	up	with	arrows	that	reflect	correlation,	not	causation

§ What	do	the	arrows	really	mean?
§ Topology	may	happen	to	encode	causal	structure
§ Topology	really	encodes	conditional	independence



Size	of	a	Bayes’ Net

§ How	big	is	a	joint	distribution	over	N	
Boolean	variables?

2N

§ How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?

O(N	*	2k)

§ Both	give	you	the	power	to	calculate

§ BNs:	Huge	space	savings!

§ Also	easier	to	elicit	local	CPTs

§ Also	faster	to	answer	queries	(coming)



Inference	in	Bayes’	Net

§ Many	algorithms	for	both	exact	and	approximate	inference
§ Complexity	often	based	on

§ Structure	of	the	network
§ Size	of	undirected	cycles

§ Usually	faster	than	exponential	in	number	of	nodes

§ Exact	inference
§ Variable	elimination
§ Junction	trees	and	belief	propagation

§ Approximate	inference
§ Loopy	belief	propagation
§ Sampling	based	methods:	likelihood	weighting,	Markov	chain	Monte	Carlo
§ Variational approximation	



Summary:	Bayes’ Net	Semantics

§ A	directed,	acyclic	graph,	one	node	per	random	variable
§ A	conditional	probability	table	(CPT)	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	combination	
of	parents’ values

§ Bayes’ nets	compactly encode	joint	distributions

§ As	a	product	of	local	conditional	distributions

§ To	see	what	probability	a	BN	gives	to	a	full	assignment,	
multiply	all	the	relevant	conditionals	together:



Hidden	Markov	Models

§ Defines	a	joint	probability	distribution:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN



Hidden	Markov	Models

§ An	HMM	is	defined	by:
§ Initial	distribution:
§ Transitions:
§ Emissions:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN



Conditional	Independence

HMMs	have	two	important	independence	properties:
§ Future	independent	of	past	given	the	present

X2

E1

X1 X3 X4

E2 E3 E4

? ?



Conditional	Independence

HMMs	have	two	important	independence	properties:
§ Future	independent	of	past	given	the	present
§ Current	observation	independent	of	all	else	given	current	state

X2

E1

X1 X3 X4

E2 E3 E4

?

?



Conditional	Independence

§ HMMs	have	two	important	independence	properties:
§ Markov	hidden	process,	future	depends	on	past	via	the	present
§ Current	observation	independent	of	all	else	given	current	state

§ Quiz:	does	this	mean	that	observations	are	independent given	no	evidence?
§ [No,	correlated	by	the	hidden	state]

X2

E1

X1 X3 X4

E2 E3 E4

? ?



Inference	in	Ghostbusters

§ A	ghost	is	in	the	grid	
somewhere

§ Sensor	readings	tell	how	
close	a	square	is	to	the	
ghost
§ On	the	ghost:	red
§ 1	or	2	away:	orange
§ 3	or	4	away:	yellow
§ 5+	away:	green

P(red	|	3) P(orange	|	3) P(yellow	|	3) P(green	|	3)
0.05 0.15 0.5 0.3

§ Sensors	are	noisy,	but	we	know	P(Color	|	Distance)

[Demo:	Ghostbuster	– no	probability	 (L12D1)	]



Ghostbusters	HMM
§ P(X1)	=	uniform
§ P(X’|X)	=	ghosts	usually	move	clockwise,	

but	sometimes	move	in	a	random	direction	or	stay	put
§ P(E|X)	=	same	sensor	model	as	before:

red means	probably	close,	green means	likely	far	away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X’|X=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X2

E1

X1 X3 X4

E2 E3 E4

E5

X P(red | x) P(orange | x) P(yellow | x) P(green | x)
2 … … … …
3 0.05 0.15 0.5 0.3
4 … … … …

P(E|X)
(One row 
for every 
value of X)

Etc…



HMM	Examples

§ Speech	recognition	HMMs:
§ States	are	specific	positions	in	specific	words	(so,	tens	of	thousands)
§ Observations	are	acoustic	signals	(continuous	valued)

X2

E1

X1 X3 X4

E2 E3 E4



HMM	Examples

§ POS	tagging	HMMs:
§ State	is	the	parts	of	speech	tag	for	a	specific	word
§ Observations	are	words	in	a	sentence	(size	of	the	vocabulary)

X2

E1

X1 X3 X4

E2 E3 E4



HMM	Computations

§ Given	
§ parameters
§ evidence E1:n =e1:n

§ Inference problems include:
§ Filtering, find P(Xt|e1:t) for some t
§ Most probable explanation, for some t find 

x*1:t = argmaxx1:t P(x1:t|e1:t)
§ Smoothing, find P(Xt|e1:n) for some t < n



Filtering (aka	Monitoring)

§ The	task	of	tracking	the	agent’s	belief	state,	B(x),	over	time
§ B(x)	is	a	distribution	over	world	states	– repr agent	knowledge
§ We	start	with	B(X)	in	an	initial	setting,	usually	uniform
§ As	time	passes,	or	we	get	observations,	we	update	B(X)

§ Many	algorithms	for	this:
§ Exact	probabilistic	inference
§ Particle	filter	approximation
§ Kalman filter	(a	method	for	handling	continuous	Real-valued	random	vars)

§ invented	in	the	60’for	Apollo	Program	– real-valued	state,	Gaussian	noise



HMM	Examples

§ Robot	tracking:
§ States	(X)	are	positions	on	a	map	(continuous)
§ Observations	(E)	are	range	readings	(continuous)

X2

E1

X1 X3 X4

E2 E3 E4



Filtering (aka	Monitoring)

§ Filtering,	or	monitoring,	is	the	task	of	tracking	the	distribution	Bt(X)
(called	“the	belief	state”)	over	time

§ We	start	with	B0(X)	in	an	initial	setting,	usually	uniform

§ We	update	Bt(X)																							computing	Bt+1(X)
1. As	time	passes,	and	 using	prob model	of	how	ghosts	move
2. As	we	get	observations using	prob model	of	how	noisy	sensors	work



Filtering:	Base	Cases

E1

X1

X2X1

“Observation” “Passage of Time”



Forward	Algorithm

§ t =	0
§ B(Xt)	=	initial	distribution
§ Repeat	forever

§ B’(Xt+1)	=	Simulate	passage	of	time	from	B(Xt)
§ Observe	et+1
§ B(Xt+1)	=	Update	B’(Xt+1) based	on	probability	of	et+1

36



Passage	of	Time

§ Assume	we	have	current	belief	P(X	|	evidence	to	date)

§ Then,	after	one	time	step	passes:

§ Basic	idea:	beliefs	get	“pushed” through	the	transitions
§ With	the	“B” notation,	we	have	to	be	careful	about	what	time	step	t	the	belief	is	about,	and	what	

evidence	it	includes

X2X1

=
X

xt

P (X
t+1, xt

|e1:t)

=
X

xt

P (X
t+1|xt

, e1:t)P (x
t

|e1:t)

=
X

xt

P (X
t+1|xt

)P (x
t

|e1:t)

§ Or	compactly:

B

0(X
t+1) =

X

xt

P (X 0|x
t

)B(x
t

)

P (Xt+1|e1:t)



Example:	Passage	of	Time

§ As	time	passes,	uncertainty	“accumulates”

T	=	1 T	=	2 T	=	5

(Transition	model:	ghosts	usually	go	clockwise)



Observation
§ Assume	we	have	current	belief	P(X	|	previous	evidence):

§ Then,	after	evidence	comes	in:

§ Or,	compactly:

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

§ Basic	idea:	beliefs	“reweighted”	
by	likelihood	of	evidence

§ Unlike	passage	of	time,	we	have	
to	normalize

P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

P (Xt+1, et+1|e1:t)/P (et+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)P (Xt+1, et+1|e1:t)/P (et+1|e1:t)B(Xt+1) /Xt+1 P (et+1|Xt+1)B

0(Xt+1)=

E1

X1

Defn cond prob

Chain rule

Independence



Example:	Observation

§ As	we	get	observations,	beliefs	get	reweighted,	uncertainty	“decreases”

Before	observation After	observation



Normalization	to	Account	for	Evidence

X E P
rain U 0.4
rain - 0.1
sun U 0.2
sun - 0.3

X P
rain 0.67
sun 0.33

X E P
rain U 0.4
sun U 0.2

SELECT the	joint	
probabilities	
matching	the	
evidence

NORMALIZE	the	
selection

(make	it	sum	to	one)

Since	could	have	seen	other	evidence,	we	normalize	by	dividing	by	the	
probability	of	the	evidence	we	did see	(in	this	case	dividing	by	0.5)…



Pacman – Sonar	(P5)

[Demo:	Pacman– Sonar	– No	Beliefs(L14D1)]



Video	of	Demo	Pacman – Sonar	(with	beliefs)



Summary:	Online	Belief	Updates

Every	time	step,	we	start	with	current	P(X	|	evidence)
1.	We	update	for	time:

2.	We	update	for	evidence:

The	forward	algorithm	does	both	at	once	(and	doesn’t	normalize)
Computational	complexity?

X2X1

X2

E2
O(X2	+XE)	time	&	O(X+E)	space


