CSE 573: Artificial Intelligence

Bayes' Net Teaser

(slides by Dan Weld)
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- Bayes rule

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given $\mathrm{Z}: \quad X \Perp Y \mid Z$ if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Probabilistic Inference

- Probabilistic inference =
"compute a desired probability from other known probabilities (e.g. conditional from joint)"
- We generally compute conditional probabilities
- P(on time \| no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P (on time | no accidents, 5 a.m.) $=0.95$
- P (on time \mid no accidents, 5 a.m., raining $)=0.80$

- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables:
- Query* variable:
- Hidden variables:
- Step 1: Select the entries consistent with the evidence

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} P(\underbrace{Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}}_{X_{1}, X_{2}, \ldots X_{n}})
$$ of Query and evidence

- We want:

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

* Works fine with multiple query variables, too
- Step 3: Normalize

Inference by Enumeration

- Computational problems?
- Worst-case time complexity O($\left.\mathrm{d}^{\mathrm{n}}\right)$
- Space complexity $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$ to store the joint distribution

The Sword of Conditional Independence!

Slay
the
Basilisk!
$X \Perp Y \mid Z \quad$ Means: $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$

Or, equivalently: $\forall x, y, z: P(x \mid z, y)=P(x \mid z)$

Bayes'Nets: Big Picture

Bayes' Nets

- Representation \& Semantics
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes Nets = a Kind of Probabilistic Graphical Model

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example:value of information

11
Friction, Air friction, Mass of pulley, Inelastic string, ...

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly ... aka probabilistic graphical model
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Bayes Nets Implicitly Encode Joint Distribution

B	$P(B)$
$+b$	0.001
$-b$	0.999

A	J	$P(J \mid A)$
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

$P(+b,-e,+a,-j,+m)=$

Bayes Nets Implicitly Encode Joint Distribution

B	$P(B)$
$+b$	0.001
$-b$	0.999

A	J	$P(J \mid A)$
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

$P(+b,-e,+a,-j,+m)=$
$P(+b) P(-e) P(+a \mid+b,-e) P(-j \mid+a) P(+m \mid+a)=$
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

B	E	A	$P(A \mid B, E)$
$+b$	$+e$	$+a$	0.95
$+b$	$+e$	$-a$	0.05
$+b$	$-e$	$+a$	0.94
$+b$	$-e$	$-a$	0.06
$-b$	$+e$	$+a$	0.29
$-b$	$+e$	$-a$	0.71
$-b$	$-e$	$+a$	0.001
$-b$	$-e$	$-a$	0.999

Joint Probabilities from BNs

- Why are we guaranteed that setting results in a proper joint distribution?

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\rightarrow Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Every BN represents a joint distribution, but
- Not every distribution can be represented by a specific BN
- The topology enforces certain conditional independencies

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditionalindependence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?

2^{N}

- How big is an N-node net if nodes have up to k parents?
$\mathrm{O}\left(\mathrm{N} * 2^{\mathrm{k}}\right)$

- Both give you the power to calculate

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Inference in Bayes' Net

- Many algorithms for both exact and approximate inference
- Complexity often based on
- Structure of the network
- Size of undirected cycles
- Usually faster than exponential in number of nodes
- Exact inference
- Variable elimination
- Junction trees and belief propagation
- Approximate inference
- Loopy belief propagation
- Sampling based methods: likelihood weighting, Markov chain Monte Carlo
- Variational approximation

Summary: Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets compactly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Hidden Markov Models

- Defines a joint probability distribution:
$P\left(X_{1}, \ldots, X_{n}, E_{1}, \ldots, E_{n}\right)=$

$$
\begin{aligned}
& P\left(X_{1: n}, E_{1: n}\right)= \\
& \quad P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
\end{aligned}
$$

Hidden Markov Models

- An HMM is defined by:
- Initial distribution: $\quad P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:

Conditional Independence

HMMs have two important independence properties:

- Future independent of past given the present

Conditional Independence

HMMs have two important independence properties:

- Future independent of past given the present
- Current observation independent of all else given current state

Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state

- Quiz: does this mean that observations are independent given no evidence?
- [No, correlated by the hidden state]

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away:green

- Sensors are noisy, but we know P(Color | Distance)

P (red \| 3)	P (orange \| 3)	P (yellow \| 3)	$\mathrm{P}($ green \| 3)
0.05	0.15	0.5	0.3

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X^{\prime} \mid X\right)=$ ghosts usually move clockwise, but sometimes move in a random direction or stay put
- $P(E \mid X)=$ same sensor model as before: red means probably close, green means likely far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(\mathrm{X}_{1}\right)$		

$1 / 6$	$1 / 6$	$1 / 2$
0	$1 / 6$	0
0	0	0

P(E|X)
(One row for every value of X)

X	$P(r e d \mid x)$	$P($ orange $\mid x)$	$P(y$ lllow $\mid x)$	$P($ green $\mid x)$
2	\ldots	\ldots	\ldots	\ldots
3	0.05	0.15	0.5	0.3
4	\ldots	\ldots	\ldots	\ldots

HMM Examples

- Speech recognition HMMs:
- States are specific positionsin specific words (so, tens of thousands)
- Observations are acoustic signals (continuous valued)

HMM Examples

- POS tagging HMMs:
- State is the parts of speech tag for a specific word
- Observations are words in a sentence (size of the vocabulary)

HMM Computations

- Given
- parameters
- evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: t}\right)$ for some t
- Most probable explanation, for some t find

$$
x_{1: t}^{*}=\operatorname{argmax}_{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

- Smoothing, find $P\left(X_{t} \mid e_{1: n}\right)$ for some $t<n$

Filtering (aka Monitoring)

- The task of tracking the agent's belief state, $B(x)$, over time

- $B(x)$ is a distribution over world states - repr agent knowledge
- We start with $B(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- Many algorithms for this:
- Exact probabilistic inference
- Particle filter approximation
- Kalman filter (a method for handling continuous Real-valued random vars)
- invented in the 60'for Apollo Program - real-valued state, Gaussian noise

HMM Examples

- Robot tracking:
- States (X) are positions on a map (continuous)
- Observations (E) are range readings (continuous)

Filtering (aka Monitoring)

- Filtering, or monitoring, is the task of tracking the distribution $\mathrm{B}_{\mathrm{t}}(\mathrm{X})$ (called "the belief state") over time
- We start with $\mathrm{B}_{0}(\mathrm{X})$ in an initial setting, usually uniform
- We update $\mathrm{B}_{\mathrm{t}}(\mathrm{X})$

1. As time passes, and
2. As we get observations
computing $B_{t+1}(X)$
using prob model of how ghosts move
using prob model of how noisy sensors work

Filtering: Base Cases

"Observation"

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

Forward Algorithm

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- $\mathrm{t}=0$
- $B\left(X_{t}\right)=$ initial distribution
- Repeat forever
- $B^{\prime}\left(X_{t+1}\right)=$ Simulate passage of time from $B\left(X_{t}\right)$
- Observe $\mathrm{e}_{\mathrm{t}+1}$
- $B\left(X_{t+1}\right)=$ Update $B^{\prime}\left(X_{t+1}\right)$ based on probability of e_{t+1}

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

$\mathrm{T}=1$

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
T $=5$					

Observation

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

Defn cond prob

$$
=P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \quad \text { Chain rule }
$$

$$
=P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad / P\left(e_{t+1} \mid e_{1: t}\right) \quad \text { Independence }
$$

- Or, compactly:

$$
B\left(X_{t+1}\right)=P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right) / P\left(e_{t+1} \mid e_{1: t}\right)
$$

" Basic idea: beliefs "reweighted" by likelihood of evidence

- Unlike passage of time, we have to normalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Normalization to Account for Evidence

X	E	P
rain	U	0.4
rain	-	0.1
sun	U	0.2
sun	-	0.3

SELECT the joint probabilities matching the evidence $\xrightarrow{\text { evidence }}$

NORMALIZE the

X	E	P
rain	U	0.4
sun	U	0.2

selection (make it sum to one)

$$
P(W \mid T=c)
$$

Since could have seen other evidence, we normalize by dividing by the probability of the evidence we did see (in this case dividing by 0.5)...

Pacman - Sonar (P5)

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Video of Demo Pacman - Sonar (with beliefs)

Summary: Online Belief Updates

Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence)

1. We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

2. We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

The forward algorithm does both at once (and doesn't normalize) Computational complexity?

$$
O\left(X^{2}+X E\right) \text { time \& } O(X+E) \text { space }
$$

