CSE 573: Artificial Intelligence

Bayes' Net Teaser

Daniel Weld

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

[Demo: Ghostbuster – no probability (L12D1)]

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a probability for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$$

 $P(x_1, x_2, \dots, x_n)$

• Must obey:
$$P(x_1, x_2, \dots x_n) \ge 0$$

 $\sum P(x_1, x_2, \dots x_n) = 1$

$$\sum_{(x_1, x_2, \dots, x_n)} P(x_1, x_2, \dots, x_n) =$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of joint distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Marginal Distributions

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Conditional Probabilities

- A simple relation between joint and marginal probabilities
 - In fact, this is taken as the **definition** of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$
$$= P(W = s, T = c) + P(W = r, T = c)$$
$$= 0.2 + 0.3 = 0.5$$

Probability Recap

Conditional probability

Product rule

- lity $P(x|y) = \frac{P(x,y)}{P(y)}$ P(x,y) = P(x|y)P(y)
- Chain rule $P(X_{1}, X_{2}, \dots, X_{n}) = P(X_{1})P(X_{2}|X_{1})P(X_{3}|X_{1}, X_{2}) \dots$ $= \prod_{i=1}^{n} P(X_{i}|X_{1}, \dots, X_{i-1})$ Bayes rule $P(x|y) = \frac{P(y|x)}{P(y)}P(x)$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z: $X \perp \!\!\!\perp Y | Z$ if and only if: $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

Probabilistic Inference

Probabilistic inference =

"compute a desired probability from other known probabilities (e.g. conditional from joint)"

- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's *beliefs* given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

P(W=sun | S=winter)?

1. Select data consistent with evidence

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W=sun | S=winter)?

- 1. Select data consistent with evidence
- 2. Marginalize away hidden variables (sum out temperature)

	S	Т	W	Р
	summer	hot	sun	0.30
	summer	hot	rain	0.05
	summer	cold	sun	0.10
	summer	cold	rain	0.05
	winter	hot	sun	0.10
,	winter	hot	rain	0.05
	winter	cold	sun	0.15
	winter	cold	rain	0.20

P(W=sun | S=winter)?

- 1. Select data consistent with evidence
- 2. Marginalize away hidden variables (sum out temperature)
- 3. Normalize

S	W	Р	
winter	sun	0.25	
winter	rain	0.25	

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(W=sun | S=winter)?

- 1. Select data consistent with evidence
- 2. Marginalize away hidden variables (sum out temperature)
- 3. Normalize

	S	W	Р	
,	winter	sun	0.50	
,	winter	rain	0.50	

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Computational problems?
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

Don't be Fooled

It may look cute...

Don't be Fooled

It gets big...

http://img4.wikia.nocookie.net/__cb20090430175407/monster/images/9/92/Basilisk.jpg

The Sword of Conditional Independence!

Or, equivalently: $\forall x, y, z : P(x|z, y) = P(x|z)$

17

Bayes'Nets: Big Picture

