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Offline	(MDPs)	vs.	Online	(RL)

Offline	Solution
(Planning)

Online	Learning
(RL)

Monte	Carlo
Planning

Simulator

Diff:	1)	dying	ok;	2)	(re)set	button	



§ Forall i
§ Initialize	wi =	0				

§ Repeat	Forever
Where are you?  s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

difference	ß [r	+	γ Maxa’ Q(s’,	a’)]	- Q(s,a)
Forall i do:

Approximate	Q	Learning



Exploration	vs.	Exploitation
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Two	KINDS	of	Regret
§ Cumulative	Regret:

§ achieve	near	optimal	cumulative	lifetime	reward	
(in	expectation)

§ Simple	Regret:	
§ quickly	identify	policy	with	high	reward	
(in	expectation)



Regret
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Reward

Time
∞

Exploration	policy	that	minimizes	cumulative	regret	
Minimizes	red	area



Regret
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Reward

Time
∞

Exploration	policy	that	minimizes	simple	regret…
For	any	time,	t,	minimizes	red	area	after	t

t
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RL	on	Single	State	MDP

§ Suppose	MDP	has	a	single	state	and	k	actions
§ Can	sample	rewards	of	actions	using	call	to	simulator
§ Sampling	action	a is	like	pulling	slot	machine	arm	with	random	payoff	
function	R(s,a) s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

Slide adapted from Alan Fern (OSU)
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Cumulative	Regret	Objective

s

a1 a2 ak

…

hProblem: find arm-pulling strategy such that the expected total reward 
at time n is close to the best possible (one pull per time step)
5Optimal (in expectation) is to pull optimal arm n times
5UniformBandit is poor choice --- waste time on bad arms
5Must balance exploring machines to find good payoffs and exploiting current 

knowledge

Slide adapted from Alan Fern (OSU)



Idea
• The problem is uncertainty…  How to quantify?
• Error bars

𝜇" − 𝜇 < 	
log	(2𝛿)
2𝑛

�

If arm has been sampled n times,
With probability at least 1- 𝛿:

Slide adapted from Travis Mandel (UW)



Given	Error	bars,	how	do	we	act?
• Optimism under uncertainty!
• Why?  If bad, we will soon find out!

Slide adapted from Travis Mandel (UW)



Upper	Confidence	Bound	(UCB)

𝜇"/ +
2log	(𝑡)
𝑛/

�

1. Play each arm once 

2. Play arm i that maximizes:

3. Repeat Step 2 forever

Slide adapted from Travis Mandel (UW)
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UCB	Performance	Guarantee
[Auer,	Cesa-Bianchi,	&	Fischer,	2002]

35 

UCB Performance Guarantee 
[Auer, Cesa-Bianchi, & Fischer, 2002] 

 

Theorem: The expected cumulative regret of UCB 
𝑬[𝑹𝒆𝒈𝒏] after n arm pulls is bounded by O(log n) 

 

� Is this good? 

Yes. The average per-step regret is O log 𝑛
𝑛  

 

Theorem: No algorithm can achieve a better 
expected regret (up to constant factors) 
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UCB as Exploration Function in Q-Learning
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§ Forall s, a 
§ Initialize Q(s, a) = 0,  nsa = 0    

§ Repeat Forever
Where are you?  s.
Choose action with highest Qe

Execute it in real world: (s, a, r, s’)
Do update:

Nsa += 1;   
difference ß [r + γ Maxa’ Qe(s’, a’)] - Qe(s,a)

Q(s,a) ß Qe(s,a) + 𝛼(difference)

Let Nsa be number of times one has executed a in s;  let N =     NsaΣsa

Let Qe(s,a) = Q(s,a) + √ log(N)/(1+nsa)



Video	of	Demo	Q-learning	– Epsilon-Greedy	– Crawler	



Video	of	Demo	Q-learning	– Exploration	Function	– Crawler	



A	little	history…

William R. Thompson (1933): Was the first to examine MAB 
problem, proposed a method for solving them

1940s-50s: MAB problem studied intentively during WWII,
Thompson was ignored

1970’s-1980’s: “Optimal” solution (Gittins index) found but 
is intractable and incomplete.  Thompson ignored.

2001: UCB proposed, gains widespread use due to simplicity 
and “optimal”  bounds. Thompson still ignored.

2011: Empricial results show Thompson’s 1933 method beats 
UCB, but little interest since no guarantees.

2013: Optimal bounds finally shown for Thompson Sampling

Slide adapted from Travis Mandel (UW)



Thompson’s	method	was	fundamentally	
different!	



Bayesian	vs. Frequentist

• Bayesians: You have a prior, probabilities 
interpreted as beliefs, prefer probabilistic 
decisions

• Frequentists: No prior, probabilities interpreted as 
facts about the world, prefer hard decisions 
(p<0.05)

UCB is a frequentist technique! What if we are Bayesian?



Bayesian	review:	Bayes’	Rule

𝑝 𝜃	 𝑑𝑎𝑡𝑎) = 	
𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

𝑝(𝑑𝑎𝑡𝑎)

𝑝 𝜃	 𝑑𝑎𝑡𝑎) ∝ 𝑝 𝑑𝑎𝑡𝑎 𝜃 𝑝(𝜃)

Likelihood Prior

Posterior



Bernoulli	Case

What if distribution in the set {0,1} 
instead of the range [0,1] ?

Then we flip a coin with probability p à Bernoulli distribution!

To estimate p, we count up numbers of ones and zeros

Given observed ones and zeroes, how do we calculate
the  distribution of possible values of p?



Beta-Bernoulli	Case

Beta(a,b)  à Given a 0’s and b 1’s, what is the 
distribution over means?  

Prior à pseudocounts

Likelihood à Observed counts

Posterior à pseudocounts + observed counts



How	does	this	help	us?

Thompson Sampling:

1. Specify prior (e.g., using Beta(1,1))

2. Sample from each posterior distribution to get 
estimated mean for each arm.

3. Pull arm with highest mean.

4. Repeat step 2 & 3 forever



Thompson	Empirical	Results

And shown to have optimal regret bounds just like 
(and in some cases a little better than) UCB!
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What	Else	….

hUCB & Thompson is great when we care about cumulative regret
hI.e., when the agent is acting in the real world

hBut, sometimes all we care about is finding a good arm quickly
hE.g., when we are training in a simulator

h In these cases, “Simple Regret” is better objective
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Two	KINDS	of	Regret
§ Cumulative	Regret:

§ achieve	near	optimal	cumulative	lifetime	reward	
(in	expectation)

§ Simple	Regret:	
§ quickly	identify	policy	with	high	reward	
(in	expectation)
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Simple	Regret	Objective

37 

Simple Regret Objective  
�Protocol: At time step n the algorithm picks an 

“exploration” arm 𝑎𝑛 to pull and observes reward 
𝑟𝑛 and also picks an arm index it thinks is best 𝑗𝑛  
(𝑎𝑛, 𝑗𝑛 and 𝑟𝑛  are random variables). 
�If interrupted at time n the algorithm returns 𝑗𝑛.  

 
�Expected Simple Regret (𝑬[𝑺𝑹𝒆𝒈𝒏]):  difference 

between 𝑅∗ and expected reward of arm 𝑗𝑛  
selected by our strategy at time n 
 

 𝐸[𝑆𝑅𝑒𝑔𝑛] = 𝑅∗ − 𝐸[𝑅(𝑎𝑗𝑛)] 
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How	to	Minimize	Simple	Regret?
What about UCB for simple regret?

Simple Regret Objective 
�What about UCB for simple regret? 

¾ Intuitively we might think UCB puts too much 
emphasis on pulling the best arm 

¾ After an arm starts looking good, we might be 
better off trying figure out if there is indeed a 
better arm  

 

 

 

 
Seems good, but we can do much better in theory. 

Theorem: The expected simple regret of 
UCB after n arm pulls is upper bounded by 
O 𝑛−𝑐  for a constant c.  

Seems good, but we can do much better (at least in theory).
Ø Intuitively: UCB puts too much emphasis on pulling the best arm
Ø After an arm is looking good, maybe better to see if ∃a better arm 
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Incremental	Uniform	(or	Round	Robin)
Bubeck, S., Munos, R., & Stoltz, G. (2011). Pure exploration in finitely-armed and continuous-armed bandits. 
Theoretical Computer Science, 412(19), 1832-1852
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Incremental Uniform (or Round Robin) 

Algorithm:  
� At round n pull arm with index (k mod n) + 1  
� At round n return arm (if asked) with largest average reward 
 
 
 
 
 
� This bound is exponentially decreasing in n!  

 
Compared to polynomially for UCB O 𝑛−𝑐 .  

 
 
 

Theorem: The expected simple regret of 
Uniform after n arm pulls is upper bounded 
by O 𝑒−𝑐𝑛  for a constant c.  

Bubeck, S., Munos, R., & Stoltz, G. (2011). Pure exploration in finitely-armed and 
continuous-armed bandits. Theoretical Computer Science, 412(19), 1832-1852 
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Can	we	do	even	better?

Algorithm	-Greedy	: (parameter	)
§ At	round	n,	with	probability	 pull	arm	with	best	average	reward	so	far,	otherwise	pull	one	of	

the	other	arms	at	random.	
§ At	round	n	return	arm	(if	asked)	with	largest	average	reward

Tolpin, D. & Shimony, S, E. (2012). MCTS Based on Simple Regret. AAAI Conference on Artificial Intelligence. 
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Can we do better? 

Algorithm 𝜖-Greedy : (parameter 0 < 𝜖 < 1) 
� At round n, with probability 𝜖 pull arm with best average 

reward so far, otherwise pull one of the other arms at random.  
� At round n return arm (if asked) with largest average reward 
 
 
 
 
 
 
 
 

Theorem: The expected simple regret of 𝜖-
Greedy for 𝜖 = 0.5 after n arm pulls is upper 
bounded by O 𝑒−𝑐𝑛  for a constant c that is 
larger than the constant for Uniform 
(this holds for “large enough” n).  

Tolpin, D. & Shimony, S, E. (2012). MCTS Based on Simple Regret. AAAI 
Conference on Artificial Intelligence.  



Summary	of	Bandits	in	Theory

PAC Objective:
§ UniformBandit is a simple PAC algorithm
§ MedianElimination improves by a factor of log(k) and is optimal up to 

constant factors
Cumulative Regret:

§ Uniform is very bad!
§ UCB is optimal (up to constant factors)
§ Thomson Sampling also optimal; often performs better in practice

Simple Regret:
§ UCB shown to reduce regret at polynomial rate
§ Uniform reduces at an exponential rate
§ 0.5-Greedy may have even better exponential rate



Theory	vs. Practice

• The established theoretical relationships among bandit 
algorithms have often been useful in predicting empirical 
relationships.

• But not always ….



Simple regret vs. number of samples
UCB maximizes Qa + √ ((2 ln(n)) / na)
UCB[sqrt]  maximizes Qa + √ ((2 √n) / na)

Theory	vs. Practice
si

m
pl

e
re

gr
et



That’s	all	for	Reinforcement	Learning!

§ Very	tough	problem:	How	to	perform	any	task	well	in	
an	unknown,	noisy	environment!

§ Traditionally	used	mostly	for	robotics,	but…
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Reinforcement 
Learning Agent

Data (experiences with 
environment)

Policy (how to act in 
the future)

Google DeepMind – RL applied to data center power usage


