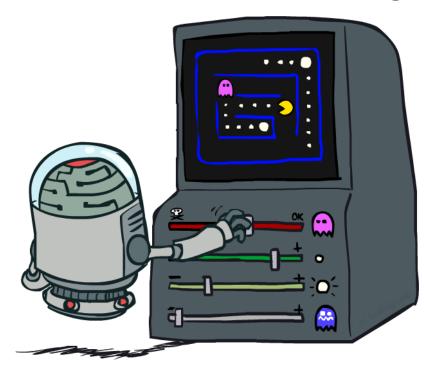
CSE 573: Artificial Intelligence

Reinforcement Learning



Dan Weld/ University of Washington

[Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley – materials available at http://ai.berkeley.edu.]

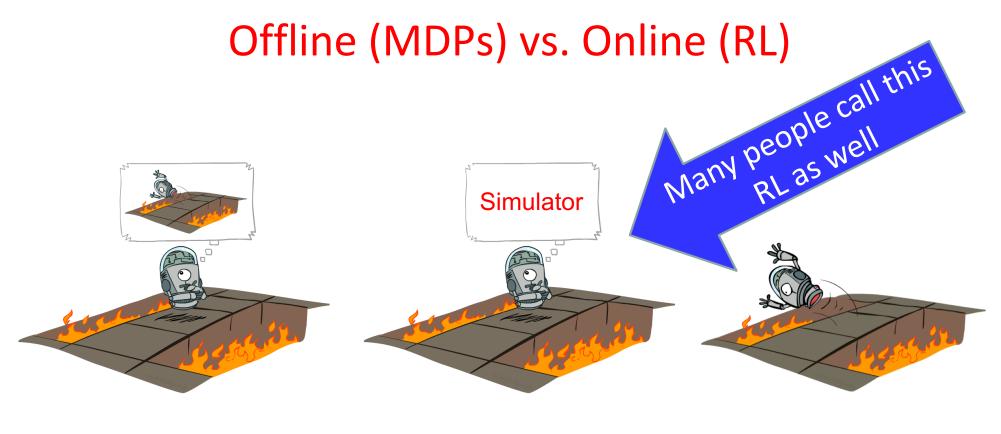
Logistics

Title: Neural Question Answering over Knowledge Graphs

Speaker: Wenpeng Yin (University of Munich)

Time: Thursday, Feb 16, 10:30 am

Location: CSE 403



Offline Solution (Planning)

Monte Carlo Planning

Online Learning (RL)

Diff: 1) dying ok; 2) (re)set button

Approximate Q Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Forall *i*
 - Initialize $w_i = 0$
- Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s')

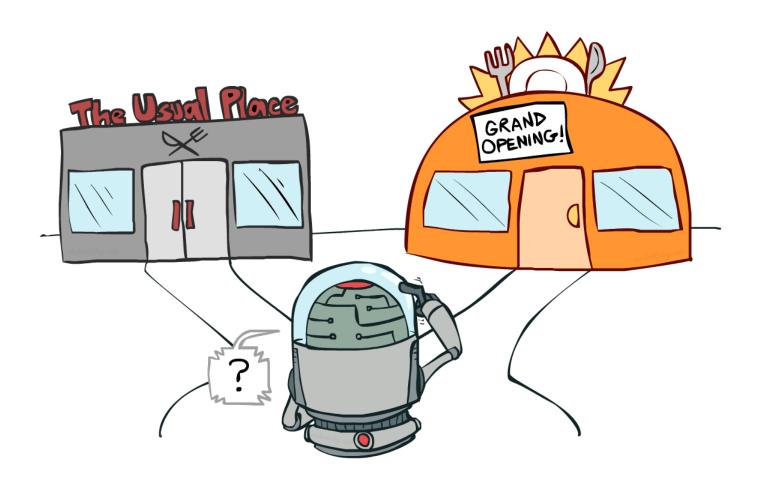
Do update:

difference \leftarrow [r + γ Max_{a'} Q(s', a')] - Q(s,a)

Forall *i* do:

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

Exploration vs. Exploitation



Two KINDS of Regret

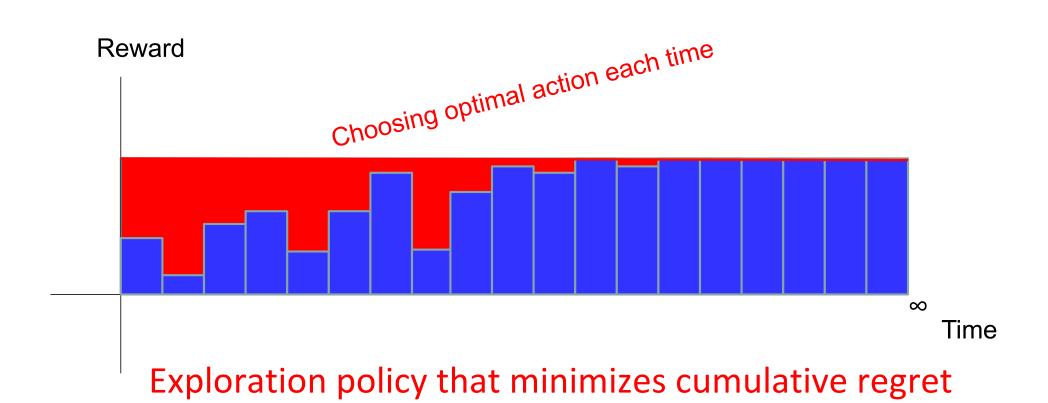
Cumulative Regret:

achieve near optimal cumulative lifetime reward (in expectation)

Simple Regret:

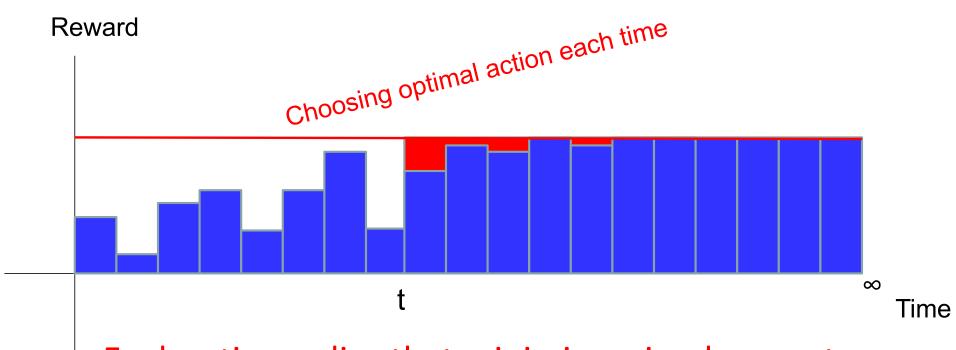
 quickly identify policy with high reward (in expectation)

Regret



Minimizes red area

Regret



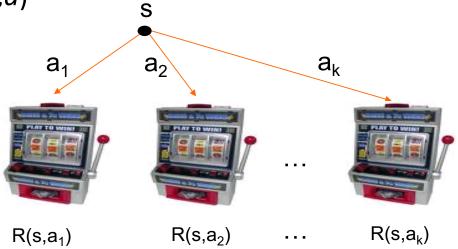
Exploration policy that minimizes simple regret... For any time, t, minimizes red area after t

RL on Single State MDP

- Suppose MDP has a single state and k actions
 - Can sample rewards of actions using call to simulator

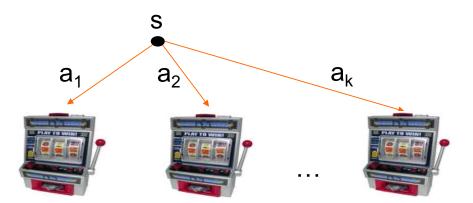
Sampling action a is like pulling slot machine arm with random payoff

function R(s,a)



Cumulative Regret Objective

- Problem: find arm-pulling strategy such that the expected total reward at time n is close to the best possible (one pull per time step)
 - ◆ Optimal (in expectation) is to pull optimal arm n times
 - UniformBandit is poor choice --- waste time on bad arms
 - Must balance exploring machines to find good payoffs and exploiting current knowledge



Idea

- The problem is uncertainty... How to quantify?
- Error bars

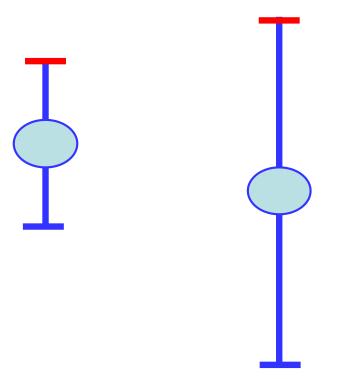
If arm has been sampled n times, With probability at least 1- δ :

$$|\hat{\mu} - \mu| < \sqrt{\frac{\log(\frac{2}{\delta})}{2n}}$$

Slide adapted from Travis Mandel (UW)

Given Error bars, how do we act?

- Optimism under uncertainty!
- Why? If bad, we will soon find out!



Slide adapted from Travis Mandel (UW)

Upper Confidence Bound (UCB)

- 1. Play each arm once
- 2. Play arm i that maximizes:

$$\widehat{\mu}_i + \sqrt{\frac{2\log(t)}{n_i}}$$

3. Repeat Step 2 forever

UCB Performance Guarantee

[Auer, Cesa-Bianchi, & Fischer, 2002]

Theorem: The expected cumulative regret of UCB $E[Reg_n]$ after n arm pulls is bounded by $O(\log n)$

Is this good?

Yes. The average per-step regret is $O(\frac{\log(n)}{n})$

Theorem: No algorithm can achieve a better expected regret (up to constant factors)

UCB as Exploration Function in Q-Learning

Let N_{sa} be number of times one has executed a in s; let $N = \sum_{sa} N_{sa}$

Let
$$Q^{e}(s,a) = Q(s,a) + \sqrt{\log(N)/(1+n_{sa})}$$

- Forall s, a
 - Initialize Q(s, a) = 0, $n_{sa} = 0$
- Repeat Forever

```
Where are you? s.
```

Choose action with highest Qe

Execute it in real world: (s, a, r, s')

Do update:

```
N_{sa} += 1;
difference \leftarrow [r + \gamma Max<sub>a</sub>, Qe(s', a')] - Qe(s,a)
Q(s,a) \leftarrow Qe(s,a) + \alpha(difference)
```

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Video of Demo Q-learning – Exploration Function – Crawler

A little history...

William R. Thompson (1933): Was the first to examine MAB problem, proposed a method for solving them

1940s-50s: MAB problem studied intentively during WWII, Thompson was ignored

1970's-1980's: "Optimal" solution (Gittins index) found but is intractable and incomplete. Thompson ignored.

2001: UCB proposed, gains widespread use due to simplicity and "optimal" bounds. Thompson still ignored.

2011: Empricial results show Thompson's 1933 method beats UCB, but little interest since no guarantees.

2013: Optimal bounds finally shown for Thompson Sampling

Thompson's method was fundamentally different!

Bayesian vs. Frequentist

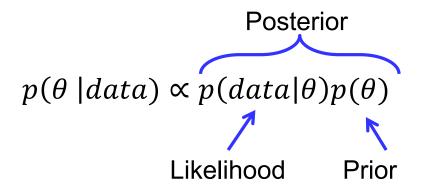
 Bayesians: You have a prior, probabilities interpreted as beliefs, prefer probabilistic decisions

 Frequentists: No prior, probabilities interpreted as facts about the world, prefer hard decisions (p<0.05)

UCB is a frequentist technique! What if we are Bayesian?

Bayesian review: Bayes' Rule

$$p(\theta | data) = \frac{p(data|\theta)p(\theta)}{p(data)}$$



Bernoulli Case

What if distribution in the set {0,1} instead of the range [0,1]?

Then we flip a coin with probability p → Bernoulli distribution!

To estimate p, we count up numbers of ones and zeros

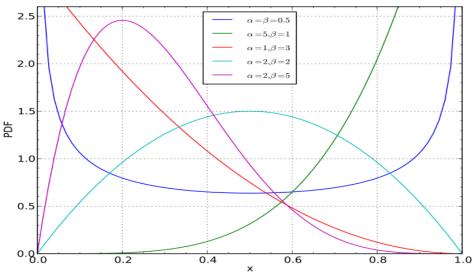
Given observed ones and zeroes, how do we calculate the distribution of possible values of p?

Beta-Bernoulli Case

Beta(a,b) → Given a 0's and b 1's, what is the

distribution over means?

Prior → pseudocounts



Likelihood → Observed counts

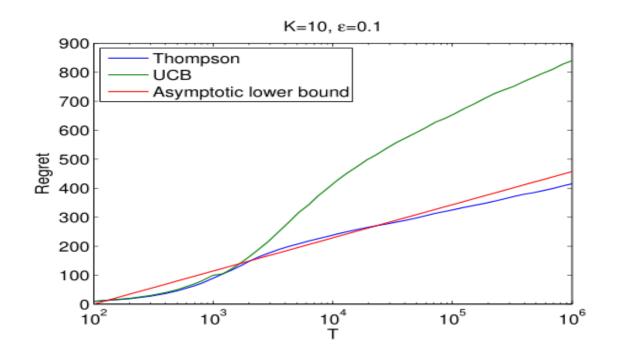
Posterior → pseudocounts + observed counts

How does this help us?

Thompson Sampling:

- 1. Specify prior (e.g., using Beta(1,1))
- 2. Sample from each posterior distribution to get estimated mean for each arm.
- 3. Pull arm with highest mean.
- 4. Repeat step 2 & 3 forever

Thompson Empirical Results



And shown to have optimal regret bounds just like (and in some cases a little better than) UCB!

What Else

- UCB & Thompson is great when we care about cumulative regret
 - I.e., when the agent is acting in the real world
- But, sometimes all we care about is finding a good arm quickly
 - E.g., when we are training in a simulator
- In these cases, "Simple Regret" is better objective

Two KINDS of Regret

Cumulative Regret:

achieve near optimal cumulative lifetime reward (in expectation)

Simple Regret:

 quickly identify policy with high reward (in expectation)

Simple Regret Objective

- **Protocol:** At time step n the algorithm picks an "exploration" arm a_n to pull and observes reward r_n and also picks an arm index it thinks is best j_n (a_n , j_n and r_n are random variables).
 - left If interrupted at time n the algorithm returns j_n .
 - Expected Simple Regret ($E[SReg_n]$): difference between R^* and expected reward of arm j_n selected by our strategy at time n

$$E[SReg_n] = R^* - E[R(a_{i_n})]$$

How to Minimize Simple Regret?

What about UCB for simple regret?

Theorem: The expected simple regret of UCB after n arm pulls is upper bounded by $O(n^{-c})$ for a constant c.

Seems good, but we can do much better (at least in theory).

- Intuitively: UCB puts too much emphasis on pulling the best arm
- \triangleright After an arm is looking good, maybe better to see if \exists a better arm

Incremental Uniform (or Round Robin)

Bubeck, S., Munos, R., & Stoltz, G. (2011). Pure exploration in finitely-armed and continuous-armed bandits. Theoretical Computer Science, 412(19), 1832-1852

Algorithm:

- At round n pull arm with index (k mod n) + 1
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of Uniform after n arm pulls is upper bounded by $O(e^{-cn})$ for a constant c.

• This bound is exponentially decreasing in n! Compared to polynomially for UCB $O(n^{-c})$.

Can we do even better?

Tolpin, D. & Shimony, S, E. (2012). MCTS Based on Simple Regret. AAAI Conference on Artificial Intelligence.

Algorithm -Greedy: (parameter)

- At round n, with probability pull arm with best average reward so far, otherwise pull one of the other arms at random.
- At round n return arm (if asked) with largest average reward

Theorem: The expected simple regret of ϵ -Greedy for $\epsilon = 0.5$ after n arm pulls is upper bounded by $O(e^{-cn})$ for a constant c that is larger than the constant for Uniform (this holds for "large enough" n).

Summary of Bandits in Theory

PAC Objective:

- UniformBandit is a simple PAC algorithm
- MedianElimination improves by a factor of log(k) and is optimal up to constant factors

Cumulative Regret:

- Uniform is very bad!
- UCB is optimal (up to constant factors)
- Thomson Sampling also optimal; often performs better in practice

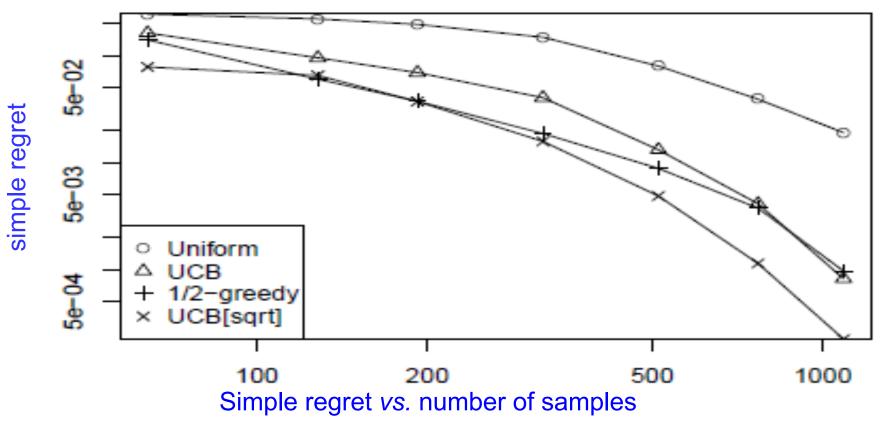
Simple Regret:

- UCB shown to reduce regret at polynomial rate
- Uniform reduces at an exponential rate
- 0.5-Greedy may have even better exponential rate

Theory vs. Practice

- The established theoretical relationships among bandit algorithms have often been useful in predicting empirical relationships.
- But not always

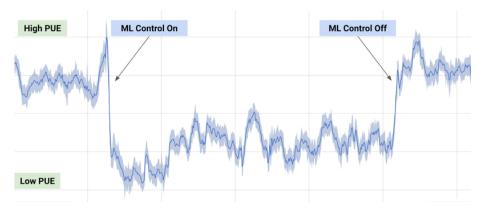
Theory vs. Practice



UCB maximizes $Q_a + \sqrt{((2 \ln(n)) / n_a)}$ UCB[sqrt] maximizes $Q_a + \sqrt{((2 \sqrt{n}) / n_a)}$

That's all for Reinforcement Learning!

- Very tough problem: How to perform any task well in an unknown, noisy environment!
- Traditionally used mostly for robotics, but...



Google DeepMind – RL applied to data center power usage