CSE 573: Artificial Intelligence

Reinforcement Learning

Dan Weld/ University of Washington

[Many slides taken from Dan Klein and Pieter Abbeel / C5188 Intro to Al at UC Berkeley — materials available at http://ai.berkeley.edu.]



Logistics

= PS 3 due today
= PS 4 due in one week (Thurs 2/16)
= Research paper comments due on Tues

= Paper itself will be on Web calendar after class



Reinforcement Learning

D)

(




Reinforcement Learning

State: s )
Reward: r Actions: a
Cnvironment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

» Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!



Example: Animal Learning

» RL studied experimentally for more than 60 years in psychology

» Rewards: food, pain, hunger, drugs, etc.
» Mechanisms and sophistication debated

= Example: foraging

- S
s T
; by 0\ b
] h 5 < v A » —
s WX :
LS 3 &
!k\

= Bees learn near-optimal foraging plan in field of artificial rowers with
controlled nectar supplies

» Bees have a direct neural connection from nectar intake measurement
to motor planning area



Example: Backgammon

Reward only for win / loss in terminal
states, zero otherwise

TD-Gammon learns a function
approximation to V(s) using a neural
network

Combined with depth 3 search, one of
the top 3 players in the world

You could imagine training Pacman this
way...

... butit's tricky! (It's also PS 4)

0 1 2 3 4 5 6 7 8 9 1011 12
V| ) [

25 24 23 22 21 20 19 18 17 16 15 14 13




Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



Example: Sidewinding

[Andrew Ng] [Video: SNAKE — climbStep+sidewinding]



“Few driving tasks are as intimidating as parallel parking....

https://www.youtube.com/watch?v=pB iFY2jldI

12



Parallel Parking

“Few driving tasks are as intimidating as parallel parking....

https://www.youtube.com/watch?v=pB iFY2jldI

13



Other Applications

Go playing
Robotic control
= helicopter maneuvering, autonomous vehicles
= Mars rover - path planning, oversubscription planning
= elevator planning
Game playing - backgammon, tetris, checkers
Neuroscience
Computational Finance, Sequential Auctions
Assisting elderly in simple tasks
Spoken dialog management
Communication Networks — switching, routing, flow control
War planning, evacuation planning




Reinforcement Learning

= Still assume a Markov decision process (MDP):
A set of statess € S

A set of actions (per state) A
A model T(s,a,s’)

A reward function R(s,a,s’) & discounty

I\ 4 TO 3
’ Overheated

= Still looking for a policy 7t(s) .

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn



}

Offline Solution Monte Carlo Online Learning
(Planning) Planning (RL)

Diff: 1) dying ok; 2) (re)set button



Four Key Ideas for RL

Credit-Assignment Problem

= \What was the real cause of reward?

Exploration-exploitation tradeoff

Model-based vs model-free learning

= What function is being learned?

Approximating the Value Function

= Smaller = easier to learn & better generalization



Credit Assignment Problem

18



Exploration-Exploitation tradeoff

= You have visited part of the state space and found a reward of 100
= s this the best you can hope for???

= Exploitation: should | stick with what | know and find a good policy w.r.t.
this knowledge?

= at risk of missing out on a better reward somewhere

= Exploration: should | look for states w/ more reward?
= at risk of wasting time & getting some negative reward )

WP
“mCt

7

19



Model-Based Learning




Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Explore (e.g., move randomly)
= Count outcomes s’ for eachs,a T(s,a,s’)
= Normalize to gR(s, a, s’ )nate of
= Discover each when we experience (s, a, s') ‘(

= Step 2: Solve the learned MDP
= For example, use value iteration, as before



Example: Model-Based Learning

Random =t Observed Episodes (Training) Learned Model
: : ~ p
Episode 1 Episode 2 T(s,a,s)
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
oo | | camo 1 || TEORN0
D, exit, x, +10 D, exit, x, +10 P
: , . )
Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 R(B, east, C) = -1

R(C, east, D) =-1

C,east, D,-1 C, east, A -1 R(D, exit, x) = +10

Assume:y =1 D, exit, x, +10 A, exit, x,-10




Convergence

If policy explores “enough” — doesn’t starve any state
Then T & R converge

So, VI, PI, Lao* etc. will find optimal policy

= Using Bellman Equations

When can agent start exploiting??

= (We'll answer this question later)

23



wo main reinforcement learning approaches

* Model-based approaches:
= explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere
use model to plan policy, MDP-style
approach leads to strongest theoretical results
often works well when state-space is manageable

* Model-free approach:
= don't learn a model of T&R; instead, learn Q-function (or policy) directly
= weaker theoretical results
= often works better when state space is large

24



wo main reinforcement learning approaches

" Model-based approaches:

Learn

T+R
|S|2|A| + |S||A| parameters (40,400)

" Model-free approach:

Learn

Q . oSN
|S||A| parameters (400)

25



Model-Free Learning




Nothing is Free in Life!

= What exactly is Free???
= No model of T
= No model of R

" (Instead, just model Q)

27



Reminder: Q-Value Iteration

= Foralls, a

= |nitialize Qq4(s,a)=0 no time steps left means an expected reward of zero
= K=0
= Repeat do Bellman backups

For every (s,a) pair:

Qt1(s,0) « L T(s,0,5) | R(s,a,8) + 7 maxQy(s',a)

et ,
"5,a,5
p

V\(s')=Max_,Q,(s’,a’)

K+=1
= Until convergence l.e., Qvalues




Puzzle: Q-Learning

= Foralls, a

= |nitialize Qq(s, a) =0 no time steps left means an expected reward of zero
= K=0
= Repeat do Bellman backups

For every (s,a) pair:
Qt1(s,0) « L T(s,0,5) | R(s,a,8) + 7 maxQy(s',a)
/ a

K +=1 V\(s')=Max_,Q,(s’,a’)

= Until convergence
Q: How can we compute without R, T ?!?

A: Compute averages using sampled outcomes




Simple Example: Expected Age

Goal: Compute expected age of CSE students

Known P(A)

-
L E[A]=) P(a)-a =0.35x20+...
8

Note: never know P(age=22)

Without P(A), instead collect samples [a,, a,, ...

Unknown P(A): “Model Based” Unknown P(A): “Model Free” \
|
Why does this P(a) _ num(a) Why does this
work? Because N E[A] ~ i Za' work? Because
eventually you . TN &= samples appear
learn the right ElA] ~ Z P(a)-a ‘ with the right

model. 2 / k frequencies.

—




Anytime Model-Free Expected Age

Goal: Compute expected age of CSE students

Let A=0

Loop fori=11to «
a; < ask “what is your age?”
A & (1-0)*A + a*a

Without P(A), instead collect samples [a,, a,, ... a]

Unknown P(A): “Model Free”

Let A=0

Loop fori=11to «
a, € ask “what is your age?” E[A] ~ — Z a;
A€ (-1)i*A+ (1) * a N 5




Sampling Q-Values

= Bigidea: learn from every experience!
= Follow exploration policy a €< t(s)
» Update Q(s,a) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often m(s), r

= Update towards running average:

Get a sample of Q(s,a): sample = R(s,a,s’) + y Max, Q(s’, a’)
Update to Q(s,a): Q(s,a) € (1-a)Q(s,a) + (a)sample
Same update: Q(s,a) € Q(s,a) + a(sample — Q(s,a))

Rearranging: Q(s,a) € Q(s,a) + a(difference)
Where difference = (R(s,a,s’) + y Max, Q(s’, a’)) - Q(s,a)



Q Learning

= Foralls, a
* |nitialize Q(s,a)=0
= Repeat Forever
Where are you? s.
Choose some action a

Execute it in real world: (s, a, r, s’)
Do update:

difference < [R(s,a,s’) + y Max, Q(s’, a’)] - Q(s,a)
Q(s,a) € Q(s,a) + a(difference)

Trial




Example Assume:y=1,a=1/2

Observed Transition: [ B, east, C, -2 ]

In state B. What should you do?
Suppose (for now) we follow a random exploration policy

- “Go east”



Example Assume:y=1,a=1/2

Observed Transitio [ B, east, C, -2 ]

o
Pz E
P

Qs,0) (1 - )Q(s.0) + (o) |r + 7 MaxQ(s',a)

-1 iz 0 oo-2 0

W%W




Example Assume:y=1,a=1/2

Observed Transition: | B, east, C, -2 | [ ¢ east,D,-2 |

W%W

A

ot
PRIBGE

P

Qs,0) = (1= )Q(s5,0) + (@) |1+ ymaxQ(s',a")

3 iz 0 oo-2 8

ool




Example Assume:y=1,a=1/2

Observed Transition: | B, east, C, -2 | [ ¢ east,D,-2 |

W%W

A

RREE

ot
PRIEYE

P

Qs,0) = (1= )Q(s5,0) + (@) |1+ ymaxQ(s',a")




Q-Learning Properties

= Q-learning converges to optimal Q function (and hence learns optimal policy)
= even if you're acting suboptimally!
= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually shrink the learning rate, a
= ... but not decrease it too quickly

= And... if you want to act optimally -

= You have to switch from explore to exploit

[Demo: Q-learning — auto — cliff grid (L11D1)]



Video of Demo Q-Learning Auto Cliff Grid




Q Learning

= Foralls, a
* |nitialize Q(s,a)=0
= Repeat Forever
Where are you? s.
Choose some action a

Execute it in real world: (s, a, r, s’)
Do update:

Qs,0) = (1 - )Q(5,0) + () [r+7maxQ(s' o)



Exploration vs. Exploitation




Questions

= How to explore?

= When to exploit?

= How to even think about this tradeoff?



Questions

= How to explore?
= Random Exploration
= Uniform exploration

= Epsilon Greedy
= With (small) probability €, act randomly 2
= With (large) probability 1-¢, act on current policy

= Exploration Functions (such as UCB)
= Thompson Sampling

= When to exploit?

= How to even think about this tradeoff?



Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <o R(s,a,s") +~ max Q(s,d")
Modified Q-Update: Q(s,a) < R(s,a,s") +~ max f(Q(s',d), N(s, a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!



Video of Demo Crawler Bot

More demos at: http://inst.eecs.berkeley.edu/~ee128/fa11/videos.html




Approximate Q-Learning




Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

* Too many states to visit them all in training

®* Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]



Example: Pacman

Let’s say we discover In naive g-learning,

through experience we know nothing
that this state is bad: about this state:




Example: Pacman

Let’s say we discover Or even this one!
through experience
that this state is bad:




Feature-Based Representations

Solution: describe a state using a vector of features (aka “properties”)

= Features = functions from states to R (often 0/1)
capturing important properties of the state
= Example features:
= Distance to closest ghost or dot
= Number of ghosts
= 1 / (dist to dot)?
" |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features
(e.g. action moves closer to food)




Linear Combination of Features

= Using a feature representation, we can write a g function (or value function)
for any state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(s,a) = wy f1(s,a)+twafo(s,a)+...+wnfn(s,a)

= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states sharing features may actually have very different values!



Approximate Q-Learning

| Q(Saa) — wlfl(s,a)+w2f2(s,a)+...—I—wnfn(s,a) I

= Q-learning with linear Q-functions:
transition = (s,a,r,s’)

difference = {r + v max Q(s, a/)] —Q(s,a)

Q(s,a) «— Q(s,a) + «[difference] Exact Q's

Forall i do:
w; <— w; + o [difference] f;(s,a)  Approximate Q's

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: in a few slides!



Q Learning

= Foralls, a
= |nitialize Q(s,a)=0
= Repeat Forever
Where are you? s.
Choose some action a

Execute it in real world: (s, a, r, S’)
Do update:

difference € [R(s,a,s’) + y Max, Q(s’, a’)] - Q(s,a)
Q(s,a) € Q(s,a) + a(difference)



Qs,0) = wifils,)Fwafals, )t Aunfals,a) |

= Foralli
" |nitialize w;=0
= Repeat Forever
Where are you? s.
Choose some action a

Execute it in real world: (s, a, r, S’)
Do update:

difference € [R(s,a,s’) + y Max, Q(s’, a’)] - Q(s,a)
Q(s,a) € Q(s,a) + a(difference)



