
CSE	573:	Artificial	Intelligence
Reinforcement	Learning

Dan	Weld/	University	of	Washington
[Many	slides	taken	from	Dan	Klein	and	Pieter	Abbeel /	CS188	Intro	to	AI	at	UC	Berkeley	– materials	available	at	http://ai.berkeley.edu.]

Logistics

§ PS	3	due	today
§ PS	4	due	in	one	week	(Thurs	2/16)
§ Research	paper	comments	due	on	Tues

§ Paper	itself	will	be	on	Web	calendar	after	class

2

Reinforcement	Learning

Reinforcement	Learning

§ Basic	idea:
§ Receive	feedback	in	the	form	of	rewards
§ Agent’s	utility	is	defined	by	the	reward	function
§ Must	(learn	to)	act	so	as	to	maximize	expected	rewards
§ All	learning	is	based	on	observed	samples	of	outcomes!

Environment

Agent

Actions:	a
State:	s
Reward:	r

Example: Animal Learning

§ RL studied experimentally for more than 60 years in psychology

§ Example: foraging

§ Rewards: food, pain, hunger, drugs, etc.
§ Mechanisms and sophistication debated

§ Bees learn near-optimal foraging plan in field of artificial flowers with
controlled nectar supplies

§ Bees have a direct neural connection from nectar intake measurement
to motor planning area

Example: Backgammon

§ Reward only for win / loss in terminal
states, zero otherwise

§ TD-Gammon learns a function
approximation to V(s) using a neural
network

§ Combined with depth 3 search, one of
the top 3 players in the world

§ You could imagine training Pacman this
way…

§ … but it’s tricky! (It’s also PS 4)

Example:	Learning	to	Walk

Initial
[Video:	AIBO	WALK	– initial][Kohl	and	Stone,	ICRA	2004]

Example:	Learning	to	Walk

Finished
[Video:	AIBO	WALK	– finished][Kohl	and	Stone,	ICRA	2004]

Example:	Sidewinding

[Andrew	Ng] [Video:	SNAKE	– climbStep+sidewinding]

12

“Few	driving	tasks	are	as	intimidating	as	parallel	parking….

https://www.youtube.com/watch?v=pB_iFY2jIdI

Parallel	Parking
“Few	driving	tasks	are	as	intimidating	as	parallel	parking….

13

https://www.youtube.com/watch?v=pB_iFY2jIdI

Other Applications

§ Go playing
§ Robotic control

§ helicopter maneuvering, autonomous vehicles
§ Mars rover - path planning, oversubscription planning
§ elevator planning

§ Game playing - backgammon, tetris, checkers
§ Neuroscience
§ Computational Finance, Sequential Auctions
§ Assisting elderly in simple tasks
§ Spoken dialog management
§ Communication Networks – switching, routing, flow control
§ War planning, evacuation planning

Reinforcement	Learning

§ Still	assume	a	Markov	decision	process	(MDP):
§ A	set	of	states	s	Î S
§ A	set	of	actions	(per	state)	A
§ A	model	T(s,a,s’)
§ A	reward	function	R(s,a,s’)	& discount	γ

§ Still	looking	for	a	policy	p(s)

§ New	twist:	don’t	know	T	or	R
§ I.e.	we	don’t	know	which	states	are	good	or	what	the	actions	do
§ Must	actually	try	actions	and	states	out	to	learn

?

Offline	(MDPs)	vs.	Online	(RL)

Offline	Solution
(Planning)

Online	Learning
(RL)

Monte	Carlo
Planning

Simulator

Diff:	1)	dying	ok;	2)	(re)set	button	

Four	Key	Ideas	for	RL

§ Credit-Assignment	Problem
§ What	was	the	real	cause	of	reward?

§ Exploration-exploitation	tradeoff

§ Model-based	vsmodel-free	learning
§ What	function	is	being	learned?

§ Approximating	the	Value	Function
§ Smaller	à easier	to	learn	&	better	generalization

Credit	Assignment	Problem

18

19

Exploration-Exploitation tradeoff

§ You have visited part of the state space and found a reward of 100
§ is this the best you can hope for???

§ Exploitation: should I stick with what I know and find a good policy w.r.t.
this knowledge?
§ at risk of missing out on a better reward somewhere

§ Exploration: should I look for states w/ more reward?
§ at risk of wasting time & getting some negative reward

Model-Based	Learning

Model-Based	Learning

§ Model-Based	Idea:
§ Learn	an	approximate	model	based	on	experiences
§ Solve	for	values	as	if	the	learned	model	were	correct

§ Step	1:	Learn	empirical	MDP	model
§ Explore	(e.g.,	move	randomly)
§ Count	outcomes	s’	for	each	s,	a
§ Normalize	to	give	an	estimate	of
§ Discover	each	 when	we	experience	(s,	a,	s’)

§ Step	2:	Solve	the	learned	MDP
§ For	example,	use	value	iteration,	as	before

Example:	Model-Based	Learning

Random	p

Assume:	g =	1

Observed	Episodes	(Training) Learned	Model

A

B C D

E

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

B,	east,	C,	-1
C,	east,	D,	-1
D,	exit,		x,	+10

E,	north,	C,	-1
C,	east,			A,	-1
A,	exit,				x,	-10

Episode	1 Episode	2

Episode	3 Episode	4
E,	north,	C,	-1
C,	east,			D,	-1
D,	exit,				x,	+10

T(s,a,s’).
T(B,	east,	C)	=	1.00
T(C,	east,	D)	=	0.75
T(C,	east,	A)	=	0.25

…

R(s,a,s’).
R(B,	east,	C)	=	-1
R(C,	east,	D)	=	-1
R(D,	exit,	x)	=	+10

…

Convergence

§ If	policy	explores	“enough”	– doesn’t	starve	any	state
§ Then	T	&	R	converge

§ So,	VI,	PI,	Lao*	etc. will	find	optimal	policy
§ Using	Bellman	Equations

§ When	can	agent	start	exploiting??
§ (We’ll	answer	this	question	later)

23

24

Two main reinforcement learning approaches

§ Model-based approaches:
§ explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere
§ use model to plan policy, MDP-style
§ approach leads to strongest theoretical results
§ often works well when state-space is manageable

§ Model-free approach:
§ don’t learn a model of T&R; instead, learn Q-function (or policy) directly
§ weaker theoretical results
§ often works better when state space is large

25

Two main reinforcement learning approaches

§ Model-based	approaches:
Learn	 T	+	R

|S|2|A|	+	|S||A|	parameters				(40,400)

§ Model-free	approach:
Learn	 Q

|S||A|	parameters (400)

Model-Free	Learning

Nothing	is	Free	in	Life!

§ What	exactly	is	Free???
§ No	model	of	T
§ No	model	of	R

§ (Instead,	just	model	Q)

27

Reminder:		Q-Value	Iteration

a

Qk+1(s,a)

s,	a

s,a,s’

’)as’,(kQa’Max)=s’(kV

§ Forall s,	a	
§ Initialize	Q0(s,	a)	=	0				 no	time	steps	left	means	an	expected	reward	of	zero

§ K	=	0
§ Repeat do	Bellman	backups

For every (s,a) pair:

K += 1
§ Until	convergence I.e.,	Q	values	don’t	change	much

This is easy….
We can sample this

Puzzle:		Q-Learning

a

Qk+1(s,a)

s,	a

s,a,s’

’)as’,(kQa’Max)=s’(kV

§ Forall s,	a	
§ Initialize	Q0(s,	a)	=	0				 no	time	steps	left	means	an	expected	reward	of	zero

§ K	=	0
§ Repeat do	Bellman	backups

For every (s,a) pair:

K += 1
§ Until	convergence I.e.,	Q	values	don’t	change	much

Q: How can we compute without R, T ?!?
A: Compute averages using sampled outcomes

Simple	Example:	Expected	Age
Goal:	Compute	expected	age	of	CSE	students

Unknown	P(A):	“Model	Based” Unknown	P(A):	“Model	Free”

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]

Known	P(A)

Why	does	this	
work?		Because	
samples	appear	
with	the	right	
frequencies.

Why	does	this	
work?		Because	
eventually	you	
learn	the	right	

model.

Note:	never	know			P(age=22)

Anytime Model-Free	Expected	Age
Goal:	Compute	expected	age	of	CSE	students

Unknown	P(A):	“Model	Free”

Without	P(A),	instead	collect	samples	[a1,	a2,	…	aN]

Let A=0
Loop for i = 1 to ∞

ai ß ask “what is your age?”
A ß (i-1)/i * A + (1/i) * ai

Let A=0
Loop for i = 1 to ∞

ai ß ask “what is your age?”
A ß (1-α)*A + α*ai

Sampling	Q-Values
§ Big	idea:	learn	from	every	experience!

§ Follow	exploration	policy	a	ß π(s)
§ Update	Q(s,a)	each	time	we	experience	a	transition	(s,	a,	s’,	r)
§ Likely	outcomes	s’	will	contribute	updates	more	often

§ Update	towards	running	average:

s

p(s),	r

s’
Get	a	sample	of	Q(s,a): sample =	R(s,a,s’)	+	γ Maxa’ Q(s’,	a’)		

Update	to	Q(s,a):

Same	update:

Q(s,a)ß (1-𝛼)Q(s,a)	+	(𝛼)sample

Q(s,a)ß Q(s,a)	+	𝛼(sample	– Q(s,a))

Rearranging: Q(s,a)ß Q(s,a)	+	𝛼(difference)
Where	difference	=	(R(s,a,s’)	+	γ Maxa’ Q(s’,	a’))	- Q(s,a)

Q	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

difference	ß [R(s,a,s’)	+	γ Maxa’ Q(s’,	a’)]	- Q(s,a)
Q(s,a) ß Q(s,a)	+	𝛼(difference)

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

In state B. What should you do?
Suppose (for now) we follow a random exploration policy

à “Go east”

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
?

B
0

0

0
0

A
0

0

0
0

E
0

½	 0	 ½	 -2	 0	-1	

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

½	 0	 ½	 -2	 83

0

0
?

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

C,	east,	D,	-2

Example Assume:	g =	1,	α =	1/2

Observed	Transition: B,	east,	C,	-2

0

0
0

C
0

0

0
8

D
0

0

0
0

B
0

0

0
0

A
0

0

0
0

E
0

0

0
0

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

0

0
3

C
0

0

0
8

D
0

0

0
-1

B
0

0

0
0

A
0

0

0
0

E
0

C,	east,	D,	-2

Q-Learning	Properties

§ Q-learning	converges	to	optimal	Q	function	(and	hence	learns optimal	policy)
§ even	if	you’re	acting	suboptimally!
§ This	is	called	off-policy	learning

§ Caveats:
§ You	have	to	explore	enough
§ You	have	to	eventually	shrink	the	learning	rate,	α
§ …	but	not	decrease	it	too	quickly

§ And… if	you	want	to	act optimally
§ You	have	to	switch	from	explore	to	exploit

[Demo:	Q-learning	– auto	– cliff	grid	(L11D1)]

Video	of	Demo	Q-Learning	Auto	Cliff Grid

Q	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

Exploration	vs.	Exploitation

Questions

§ How	to	explore?
a	Exploration
Uniform	exploration
Epsilon	Greedy

With	(small)	probability	e,	act	randomly
With	(large)	probability	1-e,	act	on	current	policy

Exploration	Functions	(such	as	UCB)
Thompson	Sampling

§ When	to	exploit?

§ How	to	even	think	about	this	tradeoff?

Questions

§ How	to	explore?
§ Random	Exploration
§ Uniform	exploration
§ Epsilon	Greedy

§ With	(small)	probability	e,	act	randomly
§ With	(large)	probability	1-e,	act	on	current	policy

§ Exploration	Functions	(such	as	UCB)
§ Thompson	Sampling

§ When	to	exploit?

§ How	to	even	think	about	this	tradeoff?

Exploration	Functions
§ When	to	explore?

§ Random	actions:	explore	a	fixed	amount
§ Better	idea:	explore	areas	whose	badness	is	not
(yet)	established,	eventually	stop	exploring

§ Exploration	function
§ Takes	a	value	estimate	u	and	a	visit	count	n,	and
returns	an	optimistic	utility,	e.g.

§ Note:	this	propagates	the	“bonus”	back	to	states	that	lead	to	unknown	states	as	well!

Modified	Q-Update:

Regular	Q-Update:

Video	of	Demo	Crawler	Bot

http://inst.eecs.berkeley.edu/~ee128/fa11/videos.htmlMore demos at:

Approximate	Q-Learning

Generalizing	Across	States

§ Basic	Q-Learning	keeps	a	table	of	all	q-values

§ In	realistic	situations,	we	cannot	possibly	learn	
about	every	single	state!
§ Too	many	states	to	visit	them	all	in	training
§ Too	many	states	to	hold	the	q-tables	in	memory

§ Instead,	we	want	to	generalize:
§ Learn	about	some	small	number	of	training	states	from	

experience
§ Generalize	that	experience	to	new,	similar	situations
§ This	is	a	fundamental	idea	in	machine	learning,	and	we’ll	

see	it	over	and	over	again

[demo	– RL	pacman]

Example:	Pacman

Let’s	say	we	discover	
through	experience	
that	this	state	is	bad:

In	naïve	q-learning,	
we	know	nothing	
about	this	state:

Example:	Pacman

Let’s	say	we	discover	
through	experience	
that	this	state	is	bad:

Or	even	this	one!

Feature-Based	Representations
Solution:	describe	a	state	using	a	vector	of	features (aka	“properties”)

§ Features	= functions	from	states	to	R	(often	0/1)	
capturing	important	properties	of	the	state

§ Example	features:
§ Distance	to	closest	ghost	or	dot
§ Number	of	ghosts
§ 1	/	(dist	to	dot)2
§ Is	Pacman in	a	tunnel?	(0/1)
§ ……	etc.
§ Is	it	the	exact	state	on	this	slide?

§ Can	also	describe	a	q-state	(s,	a)	with	features
(e.g.	action	moves	closer	to	food)

Linear	Combination	of	Features	

§ Using	a	feature	representation,	we	can	write	a	q	function	(or	value	function)	
for	any	state	using	a	few	weights:

§ Advantage:	our	experience	is	summed	up	in	a	few	powerful	numbers

§ Disadvantage:	states	sharing	features	may	actually	have	very	different	values!

Approximate	Q-Learning

§ Q-learning	with	linear	Q-functions:

§ Intuitive	interpretation:
§ Adjust	weights	of	active features
§ E.g.,	if	something	unexpectedly	bad	happens,	blame	the	features	that	were	on:	

disprefer all	states	with	that	state’s	features

§ Formal	justification:	in	a	few	slides!

Exact Q’s

Approximate Q’s
Forall i do:

Q	Learning

§ Forall s,	a	
§ Initialize	Q(s,	a)	=	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

difference	ß [R(s,a,s’)	+	γ Maxa’ Q(s’,	a’)]	- Q(s,a)
Q(s,a) ß Q(s,a)	+	𝛼(difference)

§ Forall i
§ Initialize	wi =	0				

§ Repeat	Forever
Where are you? s.
Choose some action a
Execute it in real world: (s, a, r, s’)
Do update:

difference	ß [R(s,a,s’)	+	γ Maxa’ Q(s’,	a’)]	- Q(s,a)
Q(s,a) ß Q(s,a)	+	𝛼(difference)

