CSE 573: Artificial Intelligence

Reinforcement Learning

Dan Weld/ University of Washington

[Many slides taken from Dan Klein and Pieter Abbeel / CS188 Intro to AI at UC Berkeley – materials available at http://ai.berkeley.edu.]

Logistics

2

- PS 3 due today
- PS 4 due in one week (Thurs 2/16)
- Research paper comments due on Tues
 - Paper itself will be on Web calendar after class

Reinforcement Learning

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated
- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to V(s) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way...
- ... but it's tricky! (It's also PS 4)

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – initial]

Example: Learning to Walk

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

Example: Sidewinding

[Andrew Ng]

[Video: SNAKE – climbStep+sidewinding]

"Few driving tasks are as intimidating as parallel parking....

https://www.youtube.com/watch?v=pB iFY2jIdI

12

Parallel Parking

"Few driving tasks are as intimidating as parallel parking....

https://www.youtube.com/watch?v=pB_iFY2jIdI

1

Other Applications

- Go playing
- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s') & discount γ
- Still looking for a policy π(s)
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution (Planning)

Monte Carlo Planning

Online Learning (RL)

Diff: 1) dying ok; 2) (re)set button

Four Key Ideas for RL

- Credit-Assignment Problem
 - What was the real cause of reward?
- Exploration-exploitation tradeoff
- Model-based vs model-free learning
 - What function is being learned?
- Approximating the Value Function
 - Smaller \rightarrow easier to learn & better generalization

Credit Assignment Problem

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - is this the best you can hope for???
- Exploitation: should I stick with what I know and find a good policy w.r.t. this knowledge?
 - at risk of missing out on a better reward somewhere
- **Exploration**: should I look for states w/ more reward?
 - at risk of wasting time & getting some negative reward

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Explore (e.g., move randomly)
 - Count outcomes s' for each s, a $\hat{T}(s, a, s')$
 - Normalize to $g\hat{R}(s, a, s')$ nate of
 - Discover each when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Convergence

- If policy explores "enough" doesn't starve any state
- Then T & R converge
- So, VI, PI, Lao* etc. will find optimal policy
 - Using Bellman Equations
- When can agent start exploiting??
 - (We'll answer this question later)

23

Two main reinforcement learning approaches

Model-based approaches:

- explore environment & learn model, T=P(s'|s,a) and R(s,a), (almost) everywhere
- use model to plan policy, MDP-style
- approach leads to strongest theoretical results
- often works well when state-space is manageable

Model-free approach:

- don't learn a model of T&R; instead, learn Q-function (or policy) directly
- weaker theoretical results
- often works better when state space is large

Two main reinforcement learning approaches

Model-based approaches:

Learn T + R $|S|^2|A| + |S||A|$ parameters (40,400)

Model-free approach:

Model-Free Learning

Nothing is Free in Life!

- What exactly is Free???
 - No model of T
 - No model of R
 - (Instead, just model Q)

27

Reminder: Q-Value Iteration

Puzzle: **Q-Learning**

Simple Example: Expected Age

Goal: Compute expected age of CSE students

Anytime Model-Free Expected Age

Goal: Compute expected age of CSE students

Let A=0 Loop for i = 1 to ∞ $a_i \leftarrow ask$ "what is your age?" $A \leftarrow (1-\alpha)^*A + \alpha^*a_i$

Without P(A), instead collect samples $[a_1, a_2, ..., a_N]$

Let A=0 Loop for i = 1 to ∞ $a_i \leftarrow ask$ "what is your age?" $A \leftarrow (i-1)/i * A + (1/i) * a_i$

Sampling Q-Values

- Big idea: learn from every experience!
 - Follow exploration policy a $\leftarrow \pi(s)$
 - Update Q(s,a) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

Update towards running average:

Get a sample of Q(s,a): $sample = R(s,a,s') + \gamma Max_{a'} Q(s',a')$

Update to Q(s,a): Q(s,a) \leftarrow (1- α)Q(s,a) + (α)sample

Same update: $Q(s,a) \leftarrow Q(s,a) + \alpha(sample - Q(s,a))$

Rearranging:

Q(s,a) \leftarrow Q(s,a) + α (difference) Where difference = (R(s,a,s') + γ Max_{a'} Q(s', a')) - Q(s,a)

π(s), r

Q Learning

Trial

- Forall s, a
 - Initialize Q(s, a) = 0

Repeat Forever

Where are you? s. Choose some action a Execute it in real world: *(s, a, r, s')* Do update:

difference \leftarrow [R(s,a,s') + γ Max_{a'} Q(s', a')] - Q(s,a) Q(s,a) \leftarrow Q(s,a) + α (difference)

Example

Assume: $\gamma = 1$, $\alpha = 1/2$

In state B. What should you do?

Suppose (for now) we follow a random exploration policy

Example

Assume: $\gamma = 1$, $\alpha = 1/2$

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

-1 $\frac{\gamma}{2}$ 0 $\frac{\gamma}{2}$ -2 0

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$

Q-Learning Properties

- Q-learning converges to optimal Q function (and hence *learns* optimal policy)
 - even if you're acting suboptimally!
 - This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually shrink the learning rate, α
 - ... but not decrease it too quickly
- And... if you want to *act* optimally
 - You have to switch from explore to exploit

[Demo: Q-learning – auto – cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid

Q Learning

- Forall s, a
 - Initialize Q(s, a) = 0
- Repeat Forever
 - Where are you? s.
 - **Choose some action** a

Execute it in real world: (s, a, r, s') Do update:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

Exploration vs. Exploitation

Questions

How to explore?

- When to exploit?
- How to even think about this tradeoff?

Questions

- How to explore?
 - Random Exploration
 - Uniform exploration
 - Epsilon Greedy
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on *current policy*
 - Exploration Functions (such as UCB)
 - Thompson Sampling
- When to exploit?
- How to even think about this tradeoff?

Exploration Functions

When to explore?

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

Exploration function

• Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Video of Demo Crawler Bot

More demos at: <u>http://inst.eecs.berkeley.edu/~ee128/fa11/videos.html</u>

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

[demo – RL pacman]

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Example: Pacman

Let's say we discover through experience that this state is bad:

Or even this one!

Feature-Based Representations

Solution: describe a state using a **vector of features** (aka "properties")

- Features = functions from states to R (often 0/1) capturing important properties of the state
- Example features:
 - Distance to closest ghost or dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Combination of Features

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states sharing features may actually have very different values!

Approximate Q-Learning

 $Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

Exact Q's

Approximate Q's

• Q-learning with linear Q-functions: transition = (s, a, r, s')

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$

 $Q(s,a) \leftarrow Q(s,a) + \alpha$ [difference]

Forall i do:

 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of *active* features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: in a few slides!

Q Learning

- Forall s, a
 - Initialize Q(s, a) = 0

Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s')

Do update:

difference \leftarrow [R(s,a,s') + γ Max_{a'} Q(s', a')] - Q(s,a) Q(s,a) \leftarrow Q(s,a) + α (difference)

$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$

Forall i

• Initialize $w_i = 0$

Repeat Forever

Where are you? s.

Choose some action a

Execute it in real world: (s, a, r, s')

Do update:

difference \leftarrow [R(s,a,s') + γ Max_{a'} Q(s', a')] - Q(s,a) Q(s,a) \leftarrow Q(s,a) + α (difference)