CS 573: Artificial Intelligence

Markov Decision Processes

Dan Weld

University of Washington

Many slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and some by Mausam & Andrey Kolobov

Logistics

- No class next Tues 2/7
- PS3 due next wed
- Reinforcement learning starting next Thurs

Solving MDPs

Value Iteration

- Real-Time Dynamic programming
- Policy Iteration
- Heuristic Search Methods
- Reinforcement Learning

Solving MDPs

Value Iteration (IHDR)

- Real-Time Dynamic programming (SSP)
- Policy Iteration (IHDR)
- Heuristic Search Methods (SSP)
- Reinforcement Learning (IHDR)

Policy Iteration

- 1. Policy Evaluation
- 2. Policy Improvement

Part 1 - Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Computing Utilities for a Fixed Policy

- A new basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (variation of Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

-10.00	100.00	-10.00
-10.00	70.20	-10.00
-10.00	4 8.74	-10.00
-10.00	33.30	-10.00

Iterative Policy Evaluation Algorithm

- How do we calculate the V's for a fixed policy π?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

- Efficiency: O(S²) per iteration
 - Often converges in much smaller number of iterations compared to VI

Linear Policy Evaluation Algorithm

- Another way to calculate the V's for a fixed policy π?
- Idea 2: Without the maxes, the Bellman equations are just a linear system of equations

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- Solve with Matlab (or your favorite linear system solver)
 - S equations, S unknowns = O(S³) and EXACT!
 - In large spaces, still too expensive

Policy Iteration

- Initialize π(s) to random actions
- Repeat
 - Step 1: Policy evaluation: calculate utilities of π at each s using a nested loop
 - Step 2: Policy improvement: update policy using one-step look-ahead
 For each s, what's the best action to execute, assuming agent then follows π?
 Let π'(s) = this best action.

π = π'

Until policy doesn't change

Policy Iteration Details

- Let i =0
- Initialize π_i(s) to random actions
- Repeat
 - Step 1: Policy evaluation:
 - Initialize k=0; Forall s, $V_0^{\pi}(s) = 0$
 - Repeat until V^π converges

• For each state s,
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Let k += 1
- Step 2: Policy improvement:

• For each state, s,
$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

- If $\pi_i == \pi_{i+1}$ then it's optimal; return it.
- Else let i += 1

Example

Initialize π_0 to "always go right"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

Yes! i += 1

Example

 π_1 says "always go up"

Perform policy evaluation

Perform policy improvement Iterate through states

Has policy changed?

No! We have the optimal policy

Policy Iteration Properties

- Policy iteration finds the optimal policy, guaranteed (assuming exact evaluation)!
- Often converges (much) faster

Modified Policy Iteration [van Nunen 76]

- initialize π_0 as a random [proper] policy
- Repeat

Approximate Policy Evaluation: Compute $V^{\pi_{n-1}}$ by running only few iterations of iterative policy eval.Policy Improvement: Construct π_n greedy wrt $V^{\pi_{n-1}}$

- Until convergence
- return π_n

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
 - What is the space being searched?
- In policy iteration:
 - We do fewer iterations
 - Each one is slower (must update all V^{π} and then choose new best π)
 - What is the space being searched?
- Both are dynamic programs for planning in MDPs

Comparison II

Changing the search space.

Policy Iteration

- Search over policies
- Compute the resulting value

Value Iteration

- Search over values
- Compute the resulting policy

Solving MDPs

Value Iteration

- Real-Time Dynamic programming
- Policy Iteration
- Heuristic Search Methods
- Reinforcement Learning