CS 573: Artificial Intelligence

Markov Decision Processes

Dan Weld

University of Washington

Many slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and some by Mausam & Andrey Kolobov




Logistics

= No class next Tues 2/7
= PS3 — due next wed

= Reinforcement learning starting next Thurs



Solving MDPs

= \/alue Iteration

= Real-Time Dynamic programming

= Policy Iteration

= Heuristic Search Methods

= Reinforcement Learning



Solving MDPs

= Value Iteration (IHDR)

" Real-Time Dynamic programming (SSP)

= Policy Iteration (IHDR)

= Heuristic Search Methods (SSP)

= Reinforcement Learning (IHDR)



Policy Iteration

1. Policy Evaluation
2. Policy Improvement




Part 1 - Policy Evaluation




Fixed Policies

Do the optimal action Do what 7t says to do

~s,a,S

,\
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy nt(s), then the tree would be simpler — only one action per state
= ... though the tree’s value would depend on which policy we fixed



Computing Utilities for a Fixed Policy

= A new basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

= Define the utility of a state s, under a fixed policy 7:

V™(s) = expected total discounted rewards starting in s and following ©

= Recursive relation (variation of Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),s) + V()]



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Iterative Policy Evaluation Algorithm

= How do we calculate the V’s for a fixed policy t?

= |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0

Vkﬂ-—l—l<8) — Z T(Sa W(S)a 3/) [R(37 W(S)a Sl) + ’Yvkﬂ-(s/)]

S

= Efficiency: O(S?) per iteration
= Often converges in much smaller number of iterations compared to VI



Linear Policy Evaluation Algorithm

= Another way to calculate the V’s for a fixed policy ©?

= |dea 2: Without the maxes, the Bellman equations are just a
linear system of equations

V() = ) T(s,m(s), sHIR(s,m(s),s") + YV (s)]

= Solve with Matlab (or your favorite linear system solver)
= S equations, S unknowns = O(S3) and EXACT!
= |n large spaces, still too expensive



Policy Iteration

" |nitialize n(s) to random actions

= Repeat
= Step 1: Policy evaluation: calculate utilities of it at each s using a nested loop
= Step 2: Policy improvement: update policy using one-step look-ahead
For each s, what’s the best action to execute, assuming agent then follows rt?
Let 1t’(s) = this best action.

n=r1

= Until policy doesn’t change




Policy Iteration Details

= Leti=0
" |nitialize m(s) to random actions
= Repeat
= Step 1: Policy evaluation:
= |nitialize k=0; Foralls, V,"(s) =0
= Repeat until V* converges

" Foreachstates, ym (s) « Y T(s,mi(s),s) [R(s,mi(s), ) +~Vi(s))]
" letk+=1 s
= Step 2: Policy improvement:
= For each state, s, mi+1(s) = arg CrlnaxE:T(s, a,s) [R(s, a,s’) + ny”i(s’)}
S/
= If I, == m;,, then it’s optimal; return it.
" Elseleti+=1



Example

Initialize 1, to “always go right”

Perform policy evaluation ‘\
Perform policy improvement
lterate through states ~10:00 ? mly-10-00
Has policy changed? ‘.!"!.\
-10.00 —7.?8 M| -10.00
Yes! i+=1 "




Example

T, says “always go up”

Perform policy evaluation

Perform policy improvement
Iterate through states

Has policy changed?

No! We have the optimal policy

-10.00 ‘ 100.00 \ -10.00
‘ -10.00 ! -10.00 \

‘ -10.00 !! -10.00 \
u
‘ -10.00 !E! -10.00 \




Policy Iteration Properties

= Policy iteration finds the optimal policy, guaranteed (assuming
exact evaluation)!

= Often converges (much) faster



Modified Policy Iteration van nunen 76]

* initialize t, as a random [proper] policy

= Repeat
Approximate Policy Evaluation: Compute V7n-1
by running only few iterations of iterative policy eval.
Policy Improvement: Construct 7 greedy wrt V-1

= Until convergence

" return mn

20



Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it
= What is the space being searched?

In policy iteration:
= We do fewer iterations
= Each one is slower (must update all V™ and then choose new best )
= What is the space being searched?

Both are dynamic programs for planning in MDPs



Comparison Il

* Changing the search space.

" Policy Iteration
= Search over policies
= Compute the resulting value

= \/alue lteration
= Search over values
= Compute the resulting policy

23



Solving MDPs

= \/alue Iteration

= Real-Time Dynamic programming

= Policy Iteration

= Heuristic Search Methods

= Reinforcement Learning



