
CS	573:	Artificial	Intelligence
Markov	Decision	Processes

Dan	Weld

University	of	Washington
Many	slides	by	Dan	Klein	&	Pieter	Abbeel /	UC	Berkeley.	(http://ai.berkeley.edu)	and	some	by	Mausam &	Andrey	Kolobov



Logistics

§ No	class	next	Tues	2/7

§ PS3	– due	next	wed

§ Reinforcement	learning	starting	next	Thurs



Solving	MDPs

§ Value	Iteration

§ Real-Time	Dynamic	programming

§ Policy	Iteration

§ Heuristic	Search	Methods

§ Reinforcement	Learning



Solving	MDPs

§ Value	Iteration		(IHDR)

§ Real-Time	Dynamic	programming	(SSP)

§ Policy	Iteration	(IHDR)

§ Heuristic	Search	Methods	(SSP)

§ Reinforcement	Learning	(IHDR)



Policy	Iteration

1. Policy	Evaluation
2. Policy	Improvement



Part	1	- Policy	Evaluation



Fixed	Policies

§ Expectimax trees	max	over	all	actions	to	compute	the	optimal	values

§ If	we	fixed	some	policy	p(s),	then	the	tree	would	be	simpler	– only	one	action	per	state
§ …	though	the	tree’s	value	would	depend	on	which	policy	we	fixed

a

s

s,	a

s,a,s’
s’

p(s)

s

s,	p(s)

s, p(s),s’
s’

Do	the	optimal	action Do	what	p says	to	do



Computing	Utilities	for	a	Fixed	Policy

§ A	new	basic	operation:	compute	the	utility	of	a	state	s	under	
a	fixed	(generally	non-optimal)	policy

§ Define	the	utility	of	a	state	s,	under	a	fixed	policy	p:
Vp(s)	=	expected	total	discounted	rewards	starting	in	s	and	following	p

§ Recursive	relation	(variation	of	Bellman	equation):

p(s)

s

s,	p(s)

s, p(s),s’
s’



Example:	Policy	Evaluation
Always	Go	Right Always	Go	Forward



Example:	Policy	Evaluation
Always	Go	Right Always	Go	Forward



Iterative	Policy	Evaluation	Algorithm

§ How	do	we	calculate	the	V’s	for	a	fixed	policy	p?

§ Idea	1:	Turn	recursive	Bellman	equations	into	updates
(like	value	iteration)

§ Efficiency:	O(S2)	per	iteration
§ Often	converges	in	much	smaller	number	of	iterations	compared	to	VI

p(s)

s

s,	p(s)

s, p(s),s’
s’



Linear	Policy	Evaluation	Algorithm

§ Another	way	to	calculate	the	V’s	for	a	fixed	policy	p?

§ Idea	2:	Without	the	maxes,	the	Bellman	equations	are	just	a	
linear	system	of	equations

§ Solve	with	Matlab (or	your	favorite	linear	system	solver)	
§ S	equations,	S	unknowns	=	O(S3)	and	EXACT!
§ In	large	spaces,	still	too	expensive

p(s)

s

s,	p(s)

s, p(s),s’
s’

𝑉" 𝑠 =%𝑇 𝑠, 𝜋 𝑠 , 𝑠) [𝑅 𝑠, 𝜋 𝑠 , 𝑠) 	+ 	𝛾𝑉"(𝑠′)]
�

4)



Policy	Iteration

§ Initialize	π(s)	to	random	actions
§ Repeat

§ Step	1:	Policy	evaluation:	calculate	utilities	of	π	at	each	s	using	a	nested	loop	
§ Step	2:	Policy	improvement:	update	policy	using	one-step	look-ahead
For	each	s,		what’s	the	best	action	to	execute,	assuming	agent	then	follows	π?		
Let	π’(s)	=	this	best	action.
π	=	π’

§ Until	policy	doesn’t	change



Policy	Iteration	Details
§ Let	i =0
§ Initialize	πi(s)	to	random	actions
§ Repeat

§ Step	1:	Policy	evaluation:
§ Initialize	k=0;				Forall s,	V0

π (s)	=	0
§ Repeat	until	Vπ converges

§ For	each	state	s,	

§ Let	k	+=	1
§ Step	2:	Policy	improvement:	

§ For	each	state,	s,	

§ If	πi ==	πi+1 then	it’s	optimal;	return	it.	
§ Else	let	i +=	1



Example

Initialize	π0	to “always	go	right”

Perform	policy	evaluation

Perform	policy	improvement
Iterate	through	states ?

?

?

Has	policy	changed?

Yes!		i +=	1



Example

π1	says	“always	go	up”

Perform	policy	evaluation

Perform	policy	improvement
Iterate	through	states ?

?

?

Has	policy	changed?

No!		We	have	the	optimal	policy



Policy	Iteration	Properties

§ Policy	iteration	finds	the	optimal	policy,	guaranteed	(assuming	
exact	evaluation)!

§ Often	converges	(much)	faster



Modified	Policy	Iteration	[van	Nunen 76]

§ initialize	π0 as	a	random	[proper]	policy

§ Repeat
Approximate Policy	Evaluation:	Compute	Vπn-1

by	running	only	few	iterations	of	iterative	policy	eval.
Policy	Improvement:	Construct	πn greedy	wrt Vπn-1

§ Until	convergence

§ return	πn 

20



Comparison

§ Both	value	iteration	and	policy	iteration	compute	the	same	thing	(all	optimal	values)

§ In	value	iteration:
§ Every	iteration	updates	both	the	values	and	(implicitly)	the	policy
§ We	don’t	track	the	policy,	but	taking	the	max	over	actions	implicitly	recomputes it
§ What	is	the	space	being	searched?

§ In	policy	iteration:
§ We	do	fewer	iterations
§ Each	one	is	slower	(must	update	all	Vπ and	then	choose	new	best	π)
§ What	is	the	space	being	searched?

§ Both	are	dynamic	programs	for	planning	in	MDPs



Comparison	II

§ Changing	the	search	space.

§ Policy	Iteration
§ Search	over	policies
§ Compute	the	resulting	value

§ Value	Iteration
§ Search	over	values
§ Compute	the	resulting	policy

23



Solving	MDPs

§ Value	Iteration

§ Real-Time	Dynamic	programming

§ Policy	Iteration

§ Heuristic	Search	Methods

§ Reinforcement	Learning


