
CSE	573

Markov	Decision	Processes:
Heuristic	Search	&	Real-Time	Dynamic	

Programming

Slides	adapted	from	Andrey	Kolobov and	Mausam

1



Stochastic	Shortest-Path	MDPs:	Definition

SSP	MDP	is	a	tuple	<S,	A,	T,	C,	G>,	where:
• S is	a	finite	state	space
• A is	a	finite	action	set
• T:	S x	A x	Sà[0,	1]	is	a	stationary	transition	function
• C: S x	A x	Sà R is	a	stationary	cost	function	(low	cost	is	good!)
• G is	a	set	of	absorbing	cost-free	goal	states

Under	two	conditions:
• There	is	a	proper	policy (reaches	a	goal	with	P=	1	from	all	states)
• Every	improper	policy incurs	a	cost	of	∞	from	every	state	from	

which	it	does	not	reach	the	goal	with	P=1

10

Bertsekas,	1995



V1= 0

V1= 2

Q2(s4,a40) = 5 + 0
Q2(s4,a41) = 2+ 0.6×0 

+ 0.4×2
= 2.8

min

V2= 2.8

agreedy = a41

a41

a40

s4

sg

s3

Bellman	Backup

C=5

C=2

sg
Pr=0.6

s4

s3
Pr=0.4

a40
C=5

a41
a3 C=2



Heuristic	Search

• Insight	1
– knowledge	of	a	start	state,	s0,	to	save	on	computation

~	(all	sources	shortest	path	à single	source	shortest	path)

• Insight	2
– additional	knowledge	in	the	form	of	heuristic	function

~	(dfs/bfsà A*)

41



Partial	policy	closed	wrt s0

45

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

πs0(s0)=	a1
πs0(s1)=	a2
πs0(s2)=	a1
πs0(s6)=	a1

Is this policy closed wrt s0?

a1 is	left	action
a2 is	on	right



Policy	Graph	of	πs0

46

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

πs0(s0)=	a1
πs0(s1)=	a2
πs0(s2)=	a1
πs0(s6)=	a1

a1 is	left	action
a2 is	on	right



Greedy	Policy	Graph

• Define	greedy	policy:	πV =	argminaQV(s,a)

• Define	greedy	partial	policy	rooted	at	s0
– Partial	policy	rooted	at	s0
– Greedy	policy
– denoted	by	π

• Define	greedy	policy	graph
– Policy	graph	of	π :	denoted	by		

47

¼Vs0

¼Vs0 GVs0



Heuristic	Function

• h(s):	SàR
– estimates	V*(s)	
– gives	an	indication	about	“goodness”	of	a	state
– usually	used	in	initialization	V0(s)	=	h(s)
– helps	us	avoid	seemingly	bad	states

• Define	admissible heuristic
– Optimistic	(underestimates	cost)
– h(s)	≤	V*(s)

48



Heuristic	Search	Algorithms
• Definitions

• Find	&	Revise	Scheme.

• LAO*	and	Extensions

• RTDP	and	Extensions

• Other	uses	of	Heuristics/Bounds

• Heuristic	Design

55



regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)
acyclic graph

AO* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)
cyclic graph

LAO* [Hansen&Zil.’98]

A*	à LAO*



57

LAO*	family
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	some	states	on	the	fringe	(in	greedy	graph)
§ initialize	all	new	states	by	their	heuristic	value
§ choose	a	subset	of	affected	states
§ perform	some	REVISE	computations	on	this	subset
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe	&	residuals	in	greedy	
graph	are	small

output	the	greedy	graph	as	the	final	policy



58

LAO*	[Hansen&Zilberstein 98]
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	best	state	s on	the	fringe	(in	greedy	graph)
§ initialize	all	new	states	by	their	heuristic	value
§ subset	=	all	states	in	expanded	graph	that	can	reach	s
§ perform	PI	on	this	subset
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe	&	residuals	in	greedy	
graph	are	small

output	the	greedy	graph	as	the	final	policy



59

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

add s0 in the fringe and in greedy graph

s0 V(s0)	=	h(s0)



60

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0 V(s0)	=	h(s0)

FIND: expand the best state, s0, on the fringe (in greedy graph)



61

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s0

perform PI on this subset

s0

s1 s2 s3 s4

V(s0)	

h h h h



62

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

s0

s1 s2 s3 s4

V(s0)	

h h h h



63

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

s1 s2 s3 s4

s6 s7

FIND: expand the best state, s3, on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h h h

h h

V(s0)	



64

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

s1 s2 s3 s4

s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s3

perform PI on this subset

recompute the greedy graph

h h h h

h h

V(s0)	



65

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

s1 s2 s3 s4

s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V



66

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

s1 s2 s3 s4

s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V



67

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0



68

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand some states on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s1

perform PI on this subset

recompute the greedy graph

h h V h

h h

V

V

h 0



69

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0



70

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V h V h

h h

V

V

h 0



71

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0



72

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

FIND: expand the best state on the fringe (in greedy graph)

initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform PI on this subset

recompute the greedy graph

V V V h

h h

V

V

h 0



73

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0



74

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

output the greedy graph as the final policy

V V V h

V h

V

V

h 0



75

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

LAO*
s0

Sg

s1 s2 s3 s4

s5 s6 s7

s4 was never expanded
s8 was never touched

V V V h

V h

V

V

h 0 s8



76

LAO*	[Hansen&Zilberstein 98]
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	best	state	s on	the	fringe	(in	greedy	graph)
§ initialize	all	new	states	by	their	heuristic	value
§ subset	=	all	states	in	expanded	graph	that	can	reach	s
§ perform	PI on	this	subset
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe

output	the	greedy	graph	as	the	final	policy

one expansion

lot of computation



77

Optimizations	in	LAO*
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	best	state	s on	the	fringe	(in	greedy	graph)
§ initialize	all	new	states	by	their	heuristic	value
§ subset	=	all	states	in	expanded	graph	that	can	reach	s
§ VI	iterations	until	greedy	graph	changes	(or	low	residuals)
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe

output	the	greedy	graph	as	the	final	policy



78

Optimizations	in	LAO*
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	all	states	in	greedy	fringe
§ initialize	all	new	states	by	their	heuristic	value
§ subset	=	all	states	in	expanded	graph	that	can	reach	s
§ VI	iterations	until	greedy	graph	changes	(or	low	residuals)
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe

output	the	greedy	graph	as	the	final	policy



79

iLAO*	[Hansen&Zilberstein 01]
add	s0 to	the	fringe	and	to	greedy	policy	graph

repeat
§ FIND:	expand	all	states	in	greedy	fringe
§ initialize	all	new	states	by	their	heuristic	value
§ subset	=	all	states	in	expanded	graph	that	can	reach	s
§ only	one	backup	per	state	in	greedy	graph
§ recompute the	greedy	graph

until	greedy	graph	has	no	fringe

output	the	greedy	graph	as	the	final	policy

in what order?
(fringe à start)
DFS postorder



Backup	Order	Matters
VI	- k=1

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0



k=2

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0



k=3

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0



• LAO*	may	spend	huge	time	until	a	goal	is	found
– guided	only	by	s0 and	heuristic

• LAO*	in	the	reverse	graph
– guided	only	by	goal	and	heuristic

• Properties
–Works	when	1	or	handful	of	goal	states
–May	help	in	domains	with	small	fan	in

84

Reverse	LAO*	[Dai&Goldsmith 06]



• Go	in	both	directions	from	start	state	and	goal
• Stop	when	a	bridge	is	found

85

Bidirectional	LAO*	[Dai&Goldsmith 06]



regular graph

soln:(shortest) path

A*

acyclic AND/OR graph

soln:(expected shortest)
acyclic graph

AO* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)
cyclic graph

LAO* [Hansen&Zil.’98]

All algorithms exploit heuristic guidance & reachability!

A*	à LAO*


