CSE 573

Markov Decision Processes:
Heuristic Search & Real-Time Dynamic
Programming

Slides adapted from Andrey Kolobov and Mausam



Stochastic Shortest-Path MDPs: Definition

Bertsekas, 1995

SSP MDP is atuple<S, A, T, C, G>, where:

e Sisafinite state space

* Ais afinite action set

e T:SxAxS—>[0, 1] is a stationary transition function

* C:SxAxS—> Risastationary cost function (low cost is good!)
 Gis asetof absorbing cost-free goal states

Under two conditions:

 There is a proper policy (reaches a goal with P=1 from all states)

* Every improper policy incurs a cost of oo from every state from
which it does not reach the goal with P=1

10



Bellman Backup

Q,(S4,840) =5+ 0
Q,(s4,a4,) = 2+ 0.6x0
+ 0.4%2
=2.8




Heuristic Search

* [nsight 1
— knowledge of a start state, s,, to save on computation
~ (all sources shortest path = single source shortest path)

* |[nsight 2
— additional knowledge in the form of heuristic function
~ (dfs/bfs > A*)

41



Partial policy closed wrt s,

Tyo(So)= a4
Is this policy closed wrt s,? m(s,)=a,
T[so(sz)z al
Tyo(Se)= a3

a, is left action
a, is on right



Policy Graph of &,

a, is left action
a, is on right

46



Greedy Policy Graph

* Define greedy policy: ¥ = argmin_ QY(s,a)

* Define greedy partial policy rooted at s,
— Partial policy rooted at s,
— Greedy policy
— denoted by 7 ¢,

* Define greedy policy graph
— Policy graph of n {¥,: denoted by GY,

47



Heuristic Function

* h(s): S2R
— estimates V*(s)
— gives an indication about “goodness” of a state
— usually used in initialization V,(s) = h(s)
— helps us avoid seemingly bad states

e Define admissible heuristic

— Optimistic (underestimates cost)
— h(s) £ V*(s)

48



Heuristic Search Algorithms

Definitions

Find & Revise Scheme.

LAO* and Extensions

RTDP and Extensions

Other uses of Heuristics/Bounds

Heuristic Design

55



regular graph

soln:(shortest) path

A*

A* - LAO*

acyclic AND/OR graph

soln:(expected shortest)
acyclic graph

AQ* [Nilsson’71]

cyclic AND/OR graph

soln:(expected shortest)
cyclic graph

LAO* [Hansen&Zil.’98]



LAO* family

add s, to the fringe and to greedy policy graph

repeat

= FIND: expandGom®states on the fringe (in greedy graph)
initialize all new states by their heuristic value

Choos® a subset of affected states
performGomeREVISE computations on this subset
recompute the greedy graph

until greedy graph has no fringe & residuals in greedy
graph are small

output the greedy graph as the final policy

57



LAO* [Hansen&Zilberstein 98]
add s, to the fringe and to greedy policy graph

repeat

= FIND: expand best state s on the fringe (in greedy graph)
initialize all new states by their heuristic value
subset = all states in expanded graph that can reach s
perform Pl on this subset
recompute the greedy graph

until greedy graph has no fringe &residualsingreedy
graph-are-smat

output the greedy graph as the final policy

58



LAO*

add s, in the fringe and in greedy graph

59



LAO*

FIND: expand the best state, s,, on the fringe (in greedy graph)

60



FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s,
perform Pl on this subset



LAO*

A

S

FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

62



FIND: expand the best state, s;, on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s

perform Pl on this subset

recompute the greedy graph

63



FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s;
perform Pl on this subset

recompute the greedy graph

64



FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph



FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

66



FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

67



LAO*

FIND: expand some states on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s = s,
perform Pl on this subset

recompute the greedy graph



LAO*

A

_e B
@e*a DB @6 & G

FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph




FIND: expand the best state on the fringe (in greedy graph)
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

70



LAO*

A

_e RGO h
99‘@ DG @O ) &

FIND: expand the best state on the fringe (in greedy grap
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

71



LAO*

A

9 (), L) A=)
“\ NS
HDEOD-OE O ) E

FIND: expand the best state on the fringe (in greedy grap
Initialize all new states by their heuristic value

subset = all states in expanded graph that can reach s
perform Pl on this subset

recompute the greedy graph

72



LAO*

@ ’\

f“ﬂa @’*@l@

output the greedy graph as the final policy




LAO*

A

y

output the greedy graph as the final policy

74



LGRS

S4 was never expanded
s, was never touched



LAO* [Hansen&Zilberstein 98]

add s, to the fringe and to greedy policy graph

one expansion

repeat o
= FIND: expand best state s on the fringe (in greedy graph)
= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= perform Pl on this subset

= recompute the greedy gra;)N _
[ot of computation

until greedy graph has no fringe

output the greedy graph as the final policy

76



Optimizations in LAO*

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand best state s on the fringe (in greedy graph)

= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= Vliterations until greedy graph changes (or low residuals)

" recompute the greedy graph
until greedy graph has no fringe

output the greedy graph as the final policy

77



Optimizations in LAO*

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand all states in greedy fringe
= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= Vliterations until greedy graph changes (or low residuals)

" recompute the greedy graph
until greedy graph has no fringe

output the greedy graph as the final policy

78



|LAO* [Hansen&Zilberstein 01]

add s, to the fringe and to greedy policy graph

repeat
= FIND: expand all states in greedy fringe
= jnitialize all new states by their heuristic value
= subset = all states in expanded graph that can reach s
= only one backup per state in greedy graph
" recompute the greedy graph - _

until greedy graph has no fringe in what order?
(fringe > start)

, . DFS postorder
output the greedy graph as the final policy

79



Backup Order Matters
VI - k=1

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount =0.9

Living reward =0




Reverse LAO™ [paigGoldsmith 06]

* LAO* may spend huge time until a goal is found
— guided only by s, and heuristic

e LAO* in the reverse graph
— guided only by goal and heuristic

* Properties
— Works when 1 or handful of goal states
— May help in domains with small fan in

84



Bidirectional LAO™ [paigGoldsmith 06)

* Goin both directions from start state and goal
e Stop when a bridge is found

s S
s T

85



A* - LAO*

regular graph acyclic AND/OR graph cyclic AND/OR graph

soln:(shortest) path| soln:(expected shortest) soln:(expected shortest)
acyclic graph cyclic graph

A* AQ* [Nilsson’71] LAO* [Hansen&Zil.’98]

All algorithms exploit heuristic guidance & reachability!



