CSE 573

Markov Decision Processes: Heuristic Search & Real-Time Dynamic Programming

Slides adapted from Andrey Kolobov and Mausam

Stochastic Shortest-Path MDPs: Motivation

- Assume the agent pays cost to achieve a goal
- Example applications:
 - Controlling a Mars rover

"How to collect scientific data without damaging the rover?"

Navigation

"What's the fastest way to get to a destination, taking into account the traffic jams?"

Stochastic Shortest-Path MDPs: Definition Bertsekas, 1995

SSP MDP is a tuple <*S*, *A*, *T*, *C*, *G*>, where:

- *S* is a finite state space
- (*D* is an infinite sequence (1,2, ...))
- A is a finite action set
- $T: S \times A \times S \rightarrow [0, 1]$ is a stationary transition function
- C: $S \times A \times S \rightarrow R$ is a stationary *cost function* (low cost is good!)
- *G* is a set of absorbing cost-free goal states

Under two conditions:

- There is a *proper policy* (reaches a goal with P= 1 from all states)
- Every *improper policy* incurs a cost of ∞ from every state from which it does not reach the goal with P=1

SSP MDP Details

- In SSP, maximizing ELAU = *minimizing* exp. cost
- Every cost-minimizing policy is proper!
- Thus, an optimal policy = cheapest way to a goal
- Why are SSP MDPs called "indefinite-horizon"?
 - If a policy is optimal, it will take a finite, but apriori unknown, time to reach goal

SSP MDP Example, not!

SSP MDP Example, also not!

SSP MDP Example

SSP MDPs: Optimality Principle

For an SSP MDP, let:

Exp. Lin. Add. Utility

$$- V^{\pi}(h) = E_h^{\pi}[C_1 + C_2 + ...]$$
 for all h

For every history, the value of a policy is well-defined!

- Then: Every policy either takes a finite exp. # of steps to reach a goal, or has an infinite cost.
 - V^* exists and is stationary Markovian, π^* exists and is stationary deterministic Markovian
 - For all s:

$$V^{*}(s) = \min_{a \ in \ A} \left[\sum_{s' \ in \ S} T(s, a, s') \left[C(s, a, s') + V^{*}(s') \right] \right] \pi^{*}(s) = \operatorname{argmin}_{a \ in \ A} \left[\sum_{s' \ in \ S} T(s, a, s') \left[C(s, a, s') + V^{*}(s') \right] \right]$$

Fundamentals of MDPs

- ✓ General MDP Definition
- ✓ Expected Linear Additive Utility
- ✓ The Optimality Principle
- ✓ Finite-Horizon MDPs
- ✓ Infinite-Horizon Discounted-Reward MDPs
- Stochastic Shortest-Path MDPs
- A Hierarchy of MDP Classes
- Factored MDPs
- Computational Complexity

SSP and **Other MDP Classes**

E.g., Indefinite-horizon discounted reward

- FH => SSP: turn all states (s, L) into goals
- IHDR => SSP: add γ-probability transitions to goal
- Will concentrate on SSP in the rest of the tutorial

$HDR \rightarrow SSP$

1) Invert rewards to costs

$HDR \rightarrow SSP$

1) Invert rewards to costs 2) Add new goal state & edges from absorbing states 3) \forall s,a, add edges to goal with P = 1- γ 4) Normalize 1⁄2γ 1-γ Fast +10Slow $\frac{1}{2}\gamma$ Warm $\frac{1}{2}\gamma$ Slow Fast -2 $1-\nu$ Overheated $1-\gamma$ 0 1.0 1-γ G

Computational Complexity of MDPs

Good news:

- Solving *IHDR, SSP* in flat representation is *P*-complete
- Solving FH in flat representation is P-hard
- That is, they don't benefit from parallelization, but are solvable in polynomial time!

Computational Complexity of MDPs

- Bad news:
 - Solving FH, IHDR, SSP in factored representation is EXPTIMEcomplete!
 - Flat representation doesn't make MDPs harder to solve, it makes big ones easier to describe.

Running Example

All costs 1 unless otherwise marked

Bellman Backup

Value Iteration [Bellman 57]

Running Example

n	V _n (s ₀)	V _n (s ₁)	V _n (s ₂)	V _n (s ₃)	V _n (s ₄)	
0	3	3	2	2	1	
1	3	3	2	2	2.8	
2	3	3	3.8	3.8	2.8	
3	4	4.8	3.8	3.8	3.52	
4	4.8	4.8	4.52	4.52	3.52	
5	5.52	5.52	4.52	4.52	3.808	
20	5.99921	5.99921	4.99969	4.99969	3.99969	

Convergence & Optimality

• For an SSP MDP, $\forall s \in S$,

$$\lim_{n \to \infty} V_n(s) = V^*(s)$$

irrespective of the initialization.

$VI \rightarrow Asynchronous VI$

- Is backing up *all* states in an iteration essential?
 No!
- States may be backed up
 - as many times
 - in any order
- If no state gets starved
 - convergence properties still hold!!

Residual *wrt* Value Function V (*Res*^V)

- Residual at *s* with respect to *V*
 - magnitude($\Delta V(s)$) after one Bellman backup at s

$$\operatorname{Res}^{v}(s) = \left| V_{i}(s) - \operatorname{Min}_{a \in \mathcal{A}} \sum_{s \in \mathcal{S}}^{T(s,a,s')} [C(s,a,s') + V_{i}(s')] \right|$$

- Residual wrt respect to V
 - max residual

$$-Res^{V} = \max_{s}(Res^{V}(s))$$

Res^v <€ (∈-consistency)

(General) Asynchronous VI

- ${\bf 1}\,$ initialize V arbitrarily for each state
- 2 while $Res^V > \epsilon$ do
- 3 select a state s
- 4 compute V(s) using a Bellman backup at s5 update $Res^{V}(s)$
- 6 end
- **7** return greedy policy π^V

Heuristic Search Algorithms

- Definitions
- Find & Revise Scheme.
- LAO* and Extensions
- RTDP and Extensions
- Other uses of Heuristics/Bounds
- Heuristic Design

Heuristic Search

- Insight 1
 - knowledge of a start state to save on computation
 - ~ (all sources shortest path \rightarrow single source shortest path)
- Insight 2
 - additional knowledge in the form of heuristic function ~ (dfs/bfs \rightarrow A*)

Model

 SSP (as before) with an additional start state s₀ – denoted by SSP_{s0}

- What is the solution to an SSP_{s0}
- Policy $(S \rightarrow A)$?
 - are states that are not reachable from s₀ relevant?
 - states that are never visited (even though reachable)?

Partial Policy

• Define *Partial policy*

 $-\pi: S' \rightarrow A$, where $S' \subseteq S$

- Define *Partial policy closed w.r.t. a state s.*
 - is a partial policy π_{s}
 - defined for all states s' reachable by π_s starting from s

Partial policy closed wrt s₀

 a_1 is left action a_2 is on right

Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$

Partial policy closed wrt s₀

 a_1 is left action a_2 is on right

Is this policy closed wrt s_0 ? $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$ $\pi_{s0}(s_6) = a_1$

Policy Graph of π_{s0}

 a_1 is left action a_2 is on right

 $\pi_{s0}(s_0) = a_1$ $\pi_{s0}(s_1) = a_2$ $\pi_{s0}(s_2) = a_1$ $\pi_{s0}(s_6) = a_1$

Greedy Policy Graph

- Define greedy policy: $\pi^{V} = \operatorname{argmin}_{a} Q^{V}(s,a)$
- Define *greedy partial policy rooted at s*₀
 - Partial policy rooted at s₀
 - Greedy policy
- Define *greedy policy graph*

– Policy graph of $\pi_{\frac{1}{5}0}^{V}$: denoted by G_{s0}^{V}

Heuristic Function

- h(s): S→R
 - estimates V*(s)
 - gives an indication about "goodness" of a state
 - usually used in initialization $V_0(s) = h(s)$
 - helps us avoid seemingly bad states
- Define *admissible* heuristic
 - Optimistic (underestimates cost)
 - $-h(s) \leq V^*(s)$

Admissible Heuristics

Basic idea

- Relax probabilistic domain to deterministic domain
- Use heuristics(classical planning)
- All-outcome Determinization
 - For each outcome create a different action
- Admissible Heuristics
 - Cheapest cost solution for determinized domain
 - Classical heuristics over determinized domain

Heuristic Search Algorithms

- Definitions
- Find & Revise Scheme.
- LAO* and Extensions
- RTDP and Extensions
- Other uses of Heuristics/Bounds
- Heuristic Design

A General Scheme for Heuristic Search in MDPs

• Two (over)simplified intuitions

- Focus on states in greedy policy wrt. V rooted at s₀
- Focus on states with residual > ϵ
- Find & Revise:
 - repeat
 - find a state that satisfies the two properties above
 - perform a Bellman backup
 - until no such state remains

FIND & REVISE [Bonet&Geffner 03a]

- 1 Start with a heuristic value function $V \leftarrow h$
- 2 while V's greedy graph $G_{s_0}^V$ contains a state s with $\operatorname{Res}^V(s) > \epsilon$ do 3 | FIND a state s in $G_{s_0}^V$ with $\operatorname{Res}^V(s) > \epsilon$
- 4 REVISE V(s)
- 5 end
- 6 return a π^V
- Convergence to V* is guaranteed
 - if heuristic function is admissible
 - ~no state gets starved in ∞ FIND steps

(perform Bellman backups)

F&R and Monotonicity

 $Q^*(s,a_1) < Q(s,a_2) < Q^*(s,a_2)$ a_2 can't be optimal

Real Time Dynamic Programming [Barto et al 95]

- Original Motivation
 - agent acting in the real world
- Trial
 - simulate greedy policy starting from start state;
 - perform Bellman backup on visited states
 - stop when you hit the goal
- RTDP: repeat trials forever

– Converges in the limit #trials $\rightarrow \infty$

start at start state

repeat

start at start state

repeat

start at start state

repeat

start at start state

repeat

start at start state

repeat

start at start state repeat

perform a Bellman backup simulate greedy action until hit the goal

Real Time Dynamic Programming [Barto et al 95]

- Original Motivation
 - agent acting in the real world
- Trial
 - simulate greedy policy starting from start state;
 - perform Bellman backup on visited states
 - stop when you hit the goal

No termination — condition!

RTDP: repeat trials forever

– Converges in the limit #trials $\rightarrow \infty$

RTDP Family of Algorithms

repeat

 $s \leftarrow s_0$ repeat //trials REVISE s; identify a_{greedy} FIND: pick s' s.t. T(s, a_{greedy} , s') > 0 $s \leftarrow s'$ until $s \in G$

Termination Test Take 1: Labeling

- Admissible heuristic & monotonicity
 - $\Rightarrow V(s) \le V^*(s)$ $\Rightarrow Q(s,a) \le Q^*(s,a)$
- Label state, s, as solved – if V(s) has converged $right costs - s_g$ $right costs - s_g$ $Res^V(s) < \varepsilon$ $\Rightarrow V(s)$ won't change! label s as solved

Labeling (contd)

Res^V(s) < ε s' already solved \Rightarrow V(s) won't change!

label s as solved

Labeling (contd)

ieh Costs

Res^V(s) < ε s' already solved ⇒ V(s) won't change!

 $\frac{\mathsf{Res}^{V}(\mathsf{s}) < \varepsilon}{\mathsf{Res}^{V}(\mathsf{s'}) < \varepsilon}$

best action

s'

S

best action

label s as solved

V(s), V(s') won't change! label s, s' as solved

ich Costs

Labeled RTDP [Bonet&Geffner 03b]

repeat

 $s \leftarrow s_0$ label all goal states as solved

repeat //trials REVISE s; identify a_{greedy} FIND: sample s' from T(s, a_{greedy} , s') $s \leftarrow s'$

until s is solved

for all states s in the trial try to label s as solved until s_o is solved

LRTDP

• terminates in finite time

- due to labeling procedure

• anytime

- focuses attention on more probable states

• fast convergence

focuses attention on unconverged states

LRTDP Experiments

Racetrack Domain

algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
VI(h=0)	1.101	4.045	15.451	0.662	5.435	5.896	78.720	16.418	61.773
ILAO* $(h = 0)$	2.568	11.794	43.591	1.114	11.166	12.212	250.739	57.488	182.649
LRTDP(h=0)	0.885	7.116	15.591	0.431	4.275	3.238	49.312	9.393	34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function h = 0 and $\epsilon = 10^{-3}$. Times for RTD^P not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in **bold** font.

	n min									
11-	algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
	$VI(h_{min})$	1.317	4.093	12.693	0.737	5.932	6.855	102.946	17.636	66.253
	ILAO* (h_{min})	1.161	2.910	11.401	0.309	3.514	0.387	1.055	0.692	1.367
	$LRTDP(h_{min})$	0.521	2.660	7.944	0.187	1.599	0.259	0.653	0.336	0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function $h = h_{min}$ and $\epsilon = 10^{-3}$. Times for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

Picking a Successor Take 2

- Labeled RTDP/RTDP: sample s' \propto T(s, a_{greedv} , s')
 - Advantages
 - more probable states are explored first
 - no time wasted on converged states
 - Disadvantages
 - Convergence test is a hard constraint
 - Sampling ignores "amount" of convergence
- If we knew how much V(s) is expected to change?
 sample s' ∝ expected change

Upper Bounds in SSPs

- RTDP/LAO* maintain lower bounds
 call it V₁
- Additionally associate upper bound with s $-V_u(s) \ge V^*(s)$
- Define gap(s) = $V_u(s) V_l(s)$
 - low gap(s): more converged a state
 - high gap(s): more expected change in its value

Backups on Bounds

- Recall monotonicity
- Backups on lower bound

 continue to be lower bounds
- Backups on upper bound
 - continues to be upper bounds
- Intuitively
 - V_{I} will increase to converge to V*
 - V_u will decrease to converge to V*

Bounded RTDP [McMahan et al 05]

repeat

 $s \leftarrow s_0$ repeat //trials identify a_{greedy} based on V_1 FIND: sample $s' \propto T(s, a_{greedy'}, s').gap(s')$ $s \leftarrow s'$ until gap(s) < ϵ

for all states s in trial in reverse order REVISE s

until gap(s_0) < ϵ

BRTDP Results

A, B – racetrack; C,D gridworld. A,C have sparse noise; B,D much noise

Is that the best we can do?

Focused RTDP [Smith&Simmons 06]

- Similar to Bounded RTDP except
 - a more sophisticated definition of priority that combines gap and prob. of reaching the state
 - adaptively increasing the max-trial length

Picking a Successor Take 3

[Slide adapted from Scott Sanner] 108

Value of Perfect Information RTDP [Sanner et al 09]

- What is the expected value of knowing V(s')
- Estimates EVPI(s')
 - using Bayesian updates
 - picks s' with maximum EVPI

Focused RTDP Results

Algorithm	large-b	large-b-3	large-b-w	large-ring	large-ring-3	large-ring-w
RTDP	5.30 (5.19)	10.27 (9.12)	149.07 (190.55)	3.39 (4.81)	8.05 (8.56)	16.44 (91.67)
LRTDP	1.21 (3.52)	1.63 (4.08)	1.96 (14.38)	1.74 (5.19)	2.14 (5.71)	3.13 (22.15)
HDP	1.29 (3.43)	1.86 (4.12)	2.87 (15.99)	1.27 (4.35)	2.74 (6.41)	2.92 (20.14)
HDP+L	1.29 (3.75)	1.86 (4.55)	2.87 (16.88)	1.27 (4.70)	2.74 (7.02)	2.92 (21.12)
FRTDP	0.29 (2.10)	0.49 (2.38)	0.84 (10.71)	0.22 (2.60)	0.43 (3.04)	0.99 (14.73)

Figure 1: Millions of backups before convergence with $\epsilon = 10^{-3}$. Each entry gives the number of millions of backups, with the corresponding wallclock time (seconds) in parentheses. The fastest time for each problem is shown in bold.

Figure 2: Anytime performance comparison: solution quality vs. number of backups.