CSE 573

Markov Decision Processes:
Heuristic Search & Real-Time Dynamic
Programming

Slides adapted from Andrey Kolobov and Mausam

Stochastic Shortest-Path MDPs: Motivation

* Assume the agent pays cost to achieve a goal

* Example applications:
— Controlling a Mars rover

“How to collect scientific
data without damaging
the rover?”

— Navigation
“What’s the fastest way

to get to a destination, taking
into account the traffic jams?”

Stochastic Shortest-Path MDPs: Definition

Bertsekas, 1995

SSP MDP is atuple<S, A, T, C, G>, where:

e Sisafinite state space

 (Dis an infinite sequence (1,2, ...))

* Ais afinite action set

e T:SxAxS—2[0, 1] is a stationary transition function
 C:SxAxS—> Risastationary cost function (low cost is good!)
* Gisasetof absorbing cost-free goal states

Under two conditions:

 Thereis a proper policy (reaches a goal with P= 1 from all states)

 Every improper policy incurs a cost of oo from every state from
which it does not reach the goal with P=1

SSP MDP Details

In SSP, maximizing ELAU = minimizing exp. cost
Every cost-minimizing policy is proper!
Thus, an optimal policy = cheapest way to a goal

Why are SSP MDPs called “indefinite-horizon”?

— If a policy is optimal, it will take a finite, but apriori unknown,
time to reach goal

10

SSP MDP Example not!

C(s,, @5, 5¢) =1
C(sy, @5, 84)=7.2 Clsy, Ay, 55) =1 T(s,, @,, sg) = 0.3

g al

C(Sz, al, Sl) = '1
T(s,, a;, 5,)=0.4

T(s,, @,, sg) = 0.7

C(s,, a;, 83) =5

No dead ends T s s

allowed!

C(s3, a;,83)=2.4 C(s3, @,, 53) = 0.8

11

SSP MDP Example also not!

C(s,, @5, 5¢) =1
C(sy, @5, 84)=7.2 Clsy, Ay, 55) =1 T(s,, @,, sg) = 0.3
9 oo
A C(s,, a,, S,) =-3
27 ©21 22
C(52) a]_; Sl) = '1 T(Sz, az, SG) — 0-7

No cost-free
“loops’ allowed!

12

Clsy, a5 81)=7.2

SSP MDP Example

C(sy @y 86) =1

C(Slr dy, S‘2) =1 T(Sz; d,, SG) =0.3
RO I o
d C(sy, ay 8,) =1

T(SZI a2; SG) = 07

13

SSP MDPs: Optimality Principle

For an SSP MDP, let:
Exp. Lin. Add. Utility For every history,

the value of a policy
— Vi(h) or all h is well-defined!

Then: .. Every policy either takes a
finite exp. # of steps to reach
a goal, or has an infinite cost.

— V* exists and is stationary Markovian, t* exists and is stationary
deterministic Markovian

— For all s:

V*(s) = mina in A [zs’ins T(SI a/ S') [C(SI a/ S,) + V*(S')]]
n*(s) =argming;, 4 [2,5 T(S, a, s’) [C(s, a, s’) + V*(s’)]]

14

Fundamentals of MDPs

* A Hierarchy of MDP Classes
* Factored MDPs
 Computational Complexity

15

SSP and Other MDP Classes

E.g., Indefinite-horizon discounted reward

G

16

SSP and Other MDP Classes

@) N

e FH => SSP: turn all states (s, L) into goals
* |HDR => SSP: add y-probability transitions to goal
* Will concentrate on SSP in the rest of the tutorial

17

IHDR = SSP

Overheated

18

IHDR = SSP

1) Invert rewards to costs

Overheated

19

IHDR = SSP

1) Invert rewards to costs
2) Add new goal state & edges from absorbing states
3) V's,a, add edges to goal with P = 1-y

4) Normalize
1Y

Computational Complexity of MDPs

* Good news:
— Solving IHDR, SSP in flat representation is P-complete

— Solving FH in flat representation is P-hard

— That is, they don’t benefit from parallelization, but are solvable
in polynomial time!

22

Computational Complexity of MDPs

Bad news:

— Solving FH, IHDR, SSP in factored representation is EXPTIME-
complete!

— Flat representation doesn’t make MDPs harder to solve, it
makes big ones easier to describe.

23

Running Example

All costs 1 unless otherwise marked

26

Bellman Backup

Q,(S4,840) =5+ 0
Q,(s4,a4,) = 2+ 0.6x0
+ 0.4%2
=2.8

© W N 0 U bk W N =

[y
o

Value IteratiOn [Bellman 57]

No restriction on initial value function

initialize Vo@rbitrarilyXor each state
n «— 0

iteration n

)

Toreach s € S do
compute V,,(s) using Bellman backup at s
compute residual,(s) = [V, (s) — Va=1(s)]
end

unt?l maxses residual, (s) < € E-cons lStency

return greedy policy: 7" (s) = argminge 4 ZS’ES T (s,a,s")[C(s,a,s|) + Va(s')]

termination
condition

28

Running Example

3
3
4
4.8
5.52
5.99921

3 2

3 3.8
4.8 3.8
4.8 4.52
5.52 4.52

2
3.8
3.8

4.52
4.52

2.8
2.8
3.52
3.52
3.808

5.99921 4.99969 4.99969 3.99969

29

Convergence & Optimality

e Foran SSP MDP, ¥V se€S,
lim 5., V,.(s) = V*(s)

irrespective of the initialization.

30

VI = Asynchronous VI

* |s backing up all states in an iteration essential?
— No!

e States may be backed up

— as many times
— in any order

* |f no state gets starved
— convergence properties still hold!!

35

Residual wrt Value Function V. (ResV)

* Residual at s with respect to V
— magnitude(AV/(s)) after one Bellman backup at s

Res¥(s) = | Vi(s) = Min D T(s,a,s)[C(s,a,5") + Vi(s')] |

aeA seS

e Residual wrt respect to V

— max residual
ResV <€

— Res” = max, (Res"(s)) < (E-consistency)

36

N O ks W N

(General) Asynchronous VI

initialize V' arbitrarily for each state
while Res" > ¢ do

Cselecn state s

compute V(s) using a Bellman backup at s
update Res" (s)

end
ot 1rr o : 1%
return greedy policy

37

Heuristic Search Algorithms

Definitions

Find & Revise Scheme.

LAO* and Extensions

RTDP and Extensions

Other uses of Heuristics/Bounds

Heuristic Design

38

Notation

Heuristic Search

* [nsight 1
— knowledge of a start state to save on computation
~ (all sources shortest path = single source shortest path)

* |[nsight 2
— additional knowledge in the form of heuristic function
~ (dfs/bfs > A*)

40

Model

* SSP (as before) with an additional start state s,
— denoted by SSP,,

* What is the solution to an SSP_,
* Policy (S 2 A)?
— are states that are not reachable from s, relevant?
— states that are never visited (even though reachable)?

41

Partial Policy

* Define Partial policy
—m:S 2> A, whereSC S

* Define Partial policy closed w.r.t. a state s.
— is a partial policy m,
— defined for all states s” reachable by &, starting from s

42

Partial policy closed wrt s,

Teo(So)= a4
Is this policy closed wrt s,? m(s,)=a,

T[so(sz)z al

a, is left action
a, is on right

Partial policy closed wrt s,

Tyo(So)= a4
Is this policy closed wrt s,? m(s,)=a,
T[so(sz)z al
Tyo(Se)= a3

a, is left action
a, is on right

Policy Graph of &,

a, is left action
a, is on right

45

Greedy Policy Graph

* Define greedy policy: ¥ = argmin_ QY(s,a)

* Define greedy partial policy rooted at s,
— Partial policy rooted at s,
— Greedy policy
— denoted by 7 ¢,

* Define greedy policy graph
— Policy graph of n {¥,: denoted by GY,

46

Heuristic Function

* h(s): S2R
— estimates V*(s)
— gives an indication about “goodness” of a state
— usually used in initialization V,(s) = h(s)
— helps us avoid seemingly bad states

e Define admissible heuristic

— Optimistic (underestimates cost)
— h(s) £ V*(s)

47

Admissible Heuristics

e Basicidea
— Relax probabilistic domain to deterministic domain

— Use heuristics(classical planning) @—D—»@
1

d
 All-outcome Determinization
d

— For each outcome create a different action
« Admissible Heuristics Gb»@
a
— Cheapest cost solution for determinized domain v

— Classical heuristics over determinized domain @

Heuristic Search Algorithms

Definitions

Find & Revise Scheme.

LAO* and Extensions

RTDP and Extensions

Other uses of Heuristics/Bounds

Heuristic Design

49

A General Scheme for
Heuristic Search in MDPs

* Two (over)simplified intuitions
— Focus on states in greedy policy wrt. V rooted at s,
— Focus on states with residual > €

e Find & Revise:

— repeat
 find a state that satisfies the two properties above
e perform a Bellman backup

— until no such state remains

50

FIND & REVISE [Bonet&Geffner 03a]

1 Start with a heuristic value function V < h
2 while V s greedy graph Glo contains a state s with Res" (s) > € do

3 FIND a state s in Gy, with Res" (s) > ¢

4 REVISE V (s) =

% end (perform Bellman backups)
6 return a w"

* Convergence to V* is guaranteed
— if heuristic function is admissible
— ~no state gets starved in oo FIND steps

51

F&R and Monotonicity

* V, S V= V< V¥ (V. monotonic from below)
If h is admissible: V, = h(s) <, V*
=V < V* (Vn)

Q(s,al)=5 Q(s, a,)=10

/

All values = V* Q* All values < V*, Q*

Q*(s,a,) < Q(s,a,) < Q*(s,a,)

a, can’t be optimal

52

Real Time Dynamic Programming
[Barto et al 95]

* Original Motivation
— agent acting in the real world

e Trial
— simulate greedy policy starting from start state;
— perform Bellman backup on visited states
— stop when you hit the goal

 RTDP: repeat trials forever
— Converges in the limit #trials 2 o

84

Trial

RO
S B

start at start state
repeat

perform a Bellman backup
simulate greedy action

start at start state
repeat

perform a Bellman backup
simulate greedy action

start at start state
repeat

perform a Bellman backup
simulate greedy action

start at start state
repeat

perform a Bellman backup
simulate greedy action

start at start state
repeat

perform a Bellman backup
simulate greedy action

start at start state
repeat

perform a Bellman backup
simulate greedy action
until hit the goal

Backup all states
on trajectory

RTDP tart at start state

repeat

repeat

forever perform a Bellman backup
simulate greedy action

_until hit the goal

92

Real Time Dynamic Programming
[Barto et al 95]

* Original Motivation
— agent acting in the real world

e Trial
— simulate greedy policy starting from start state;
— perform Bellman backup on visited states

— stop when you hit the goal
No termination

— condition!

 RTDP: repeat trials forever «—
— Converges in the limit #trials 2 o

93

RTDP Family of Algorithms

repeat
s € s,

repeat //trials
REVISE s; identify a, .4,

FIND(RICRS’ s.t. T(S, agreeqy S') >0

s & s’
until s € G

until@mination te@

94

Termination Test Take 1: Labeling

* Admissible heuristic & monotonicity
= V(s) < V*(s)
= Q(s,a) <Q*(s,a)

* Label state, s, as solved

S
— if V(s) has converged o"} _
& best action
\\0'
& f) |

ResY(s) <g
= V(s) won’t change!
label s as solved

Labeling (contd)

x>
0‘%
Q °
Q best action
o
& |

ResY(s) <¢
s' already solved
= V(s) won’t change!

label s as solved

96

Labeling (contd)

> >
Nk N}
< best action C :
Q Q best action
FOTR SN
© ”
best awtion G}%
Q
3
Q

ResY(s) <g @35

s' already solved

= V(s) won’t change! ResY(s) <&

label s as solved
V(s), V(s’) won’t change!

label s, s’ as solved

97

La b@lEd RTDP [Bonet&Geffner 03b]

repeat
s € s,
label all goal states as solved

repeat //trials
REVISE s; identify a,.cq,
FIND: sample s” from T(s, aecqy S')
s& s’

until s is solved

for all states s in the trial
try to label s as solved
until s, is solved

98

LRTDP

e terminates in finite time
— due to labeling procedure

* anytime

— focuses attention on more probable states

e fast conve rgence

— focuses attention on unconverged states

99

LRTDP Experiments

Start Goal

Racetrack Domain

100

large-ring large-square
500 L e ~J\ T ﬁTDP 500 T T T T T T
450 - V- 450 - A
LRTDP
400 | 1 400 | 8
— 350 | : 350 .
8 300 300 f .
@) 250 250 |- .
200 200 f .
150 150 f 8
100 100 f 8
50 50 + i
0L : : : 0 : i i —— i * *
2 4 6 - - ~n e) 50 60 70 80 90 100 110
elapsed time . . elapsed time
Computation Time
W0
algorithm small-b | large-b | h-track | small-r | large-r | small-s | large-s | small-y | large-y
vi(h = 0) 1.101 4.045 15451 0.662 5.435 5.896 78.720 16418 61.773
ILAO*(h = 0) 2.568 11.794 43.591 1.114 11.166 12212 250.739 57.488 182.649
LRTDP(h = 0) 0.885 7.116 15.591 0431 4.275 3.238 49.312 9.393 34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function 4 = 0 and € = 10~3. Times for
RTP™ not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

\(\4‘(\«\'}“ :
algorithm small-b | large-b | h-track | small-r | large-r | small-s | large-s | small-y | large-y
VI(hmin) 1.317 4,093 12.693 0.737 5.932 6.855 102.946 17.636 66.253
ILAO* (Amin) 1.161 2910 11.401 0.309 3.514 0.387 1.055 0.692 1.367
LRTDP(Amin) 0.521 2.660 7.944 0.187 1.599 0.259 0.653 0.336 0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function h = h,;,;,, and € = 1073, Times
for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

101

Picking a Successor Take 2

* Labeled RTDP/RTDP: sample s’ o< T(s, a

— Advantages
* more probable states are explored first
* no time wasted on converged states

— Disadvantages

* Convergence test is a hard constraint
e Sampling ignores “amount” of convergence

V4
greedy’ S)

* |f we knew how much V(s) is expected to change?
— sample s’ o< expected change

102

Upper Bounds in SSPs

e RTDP/LAO* maintain lower bounds
—callitV,

* Additionally associate upper bound with s
—V,(s) 2 V*(s)

* Define gap(s) = V,(s) = V|(s)
— low gap(s): more converged a state
— high gap(s): more expected change in its value

103

Backups on Bounds

Recall monotonicity

Backups on lower bound
— continue to be lower bounds

Backups on upper bound
— continues to be upper bounds

Intuitively
— V, will increase to converge to V*
— V, will decrease to converge to V*

104

BOU nded RTDP [McMahan et al 05]

repeat
s € s,

repeat //trials
identify a .4, Pased on V,
FIND: sample s” o€ T(s, a,ceqy S')-8aP(S")
s& s

until gap(s) < €

for all states s in trial in reverse order
REVISE s

until gap(s,) < €

105

BRTDP Results

-

Fracton of longest time

Informed Initialization Uninformed Initialization
T T T
El BRTDP El BRTDP
[LRTDP — — - 1H [LRTDP — —
B HDP Bl HDP
(0]
- g 0.8+
- b -
(0]
o
- C 06
o
©
- g 04,
©
©
S
T
- 0.27
— 0
A (0.94s) B (2.43s) C (1.81s) D (43.98s) A (2.11s) B (10.13s) C (3.41s) D (45.42s)
Problem Problem

A, B —racetrack; C,D gridworld. A,C have sparse noise; B,D much noise

106

Is that the best we can do?

FOCUSEd RTD P [Smith&Simmons 06]

e Similar to Bounded RTDP except

— a more sophisticated definition of priority that
combines gap and prob. of reaching the state

— adaptively increasing the max-trial length

107

Picking a Successor Take 3

Q(s.a1) Q(s.a;) Q(s.a;) Q(s.a;)

L
A B -
-]

Cost

Q(s.a) Q(s.ap) Q(s,a;) Q(s.,a,)
c I
[—

Cost

[Slide adapted from Scott Sanner] 108

Value of Perfect Information RTDP (sanner et al o9

 What is the expected value of knowing V(s’)

e Estimates EVPI(s")
— using Bayesian updates
— picks s” with maximum EVPI

109

Focused RTDP Results

Algorithm large-b large-b-3 large-b-w large-ring large-ring-3 large-ring-w
RTDP 5.30 (5.19) 10.27 (9.12) 149.07 (190.55) 3.39 (4.81) 8.05 (8.56) 16.44 (91.67)
LRTDP 1.21 (3.52) 1.63 (4.08) 1.96 (14.38) 1.74 (5.19) 2.14 (5.71) 3.13 (22.15)
HDP 1.29 (3.43) 1.86 (4.12) 2.87 (15.99) 1.27 (4.35) 2.74 (6.41) 2.92 (20.14)
HDP+L 1.29 (3.75) 1.86 (4.55) 2.87 (16.88) 1.27 (4.70) 2.74 (7.02) 2.92 (21.12)
FRTDP 0.29 (2.10) 0.49 (2.38) 0.84 (10.71) 0.22 (2.60) 0.43 (3.04) 0.99 (14.73)

the corresponding wallclock time (seconds) in parentheses. The fastest time for each problem is shown in bold.

large

ring-w
rerep—rrrrem

20 k
-40
-60 F
-80 F
-100 f
120 F

-140 |

-
-

10°

et
Figure 2: Anytime performance comparison: solution qual-

ity vs. number of backups.

large—-ring-3

Figure 1: Millions of backups before convergence with ¢ = 1073, Each entry gives the number of millions of backups, witk

110

