
CSE	573

Markov	Decision	Processes:
Heuristic	Search	&	Real-Time	Dynamic	

Programming

Slides	adapted	from	Andrey	Kolobov and	Mausam

1

Stochastic	Shortest-Path	MDPs:	Motivation

• Assume	the	agent	pays	cost	to	achieve	a	goal
• Example	applications:
– Controlling	a	Mars	rover

“How	to	collect	scientific
data	without	damaging
the	rover?”

– Navigation
“What’s	the	fastest	way	
to	get	to	a	destination,	taking
into	account	the	traffic	jams?”

8

Stochastic	Shortest-Path	MDPs:	Definition

SSP	MDP	is	a	tuple <S,	A,	T,	C,	G>,	where:
• S is	a	finite	state	space
• (D is	an	infinite	sequence	(1,2,	…))
• A is	a	finite	action	set
• T:	S x	A x	Sà[0,	1]	is	a	stationary	transition	function
• C: S x	A x	Sà R is	a	stationary	cost	function	(low	cost	is	good!)
• G is	a	set	of	absorbing	cost-free	goal	states

Under	two	conditions:
• There	is	a	proper	policy (reaches	a	goal	with	P=	1	from	all	states)
• Every	improper	policy incurs	a	cost	of	∞	from	every	state	from	

which	it	does	not	reach	the	goal	with	P=1

9

Bertsekas,	1995

SSP	MDP	Details

• In	SSP,	maximizing	ELAU	=	minimizing exp.	cost

• Every cost-minimizing	policy	is	proper!

• Thus,	an	optimal	policy	=	cheapest	way	to	a	goal

• Why	are	SSP	MDPs	called	“indefinite-horizon”?
– If	a	policy	is	optimal,	it	will	take	a	finite,	but	apriori unknown,	
time	to	reach	goal

10

SSP	MDP	Example

11

S1 S2

a1

C(s2,	a1,	s1)	=	-1

C(s1,	a1,	s2)	=	1

a2
a2

C(s1,	a2,	s1)	=	7.2
C(s2,	a2,	sG)	=	1

SG

C(sG,	a2,	sG)	=	0

C(sG,	a1,	sG)	=	0

C(s2,	a2,	s2)	=	-3

T(s2,	a2,	sG)	=	0.3

T(s2,	a2,	sG)	=	0.7

S3

C(s3,	a2,	s3)	=	0.8C(s3,	a1,	s3)	=	2.4

a1 a2

C(s2,	a1,	s3)	=	5

a1

T(s2,	a1,	s3)	=	0.6

T(s2,	a1,	s1)	=	0.4

No dead ends
allowed!

,	not!

a1

a2

SSP	MDP	Example

12

S1 S2

a1

a1
C(s2,	a1,	s1)	=	-1

C(s1,	a1,	s2)	=	1

a2
a2

C(s1,	a2,	s1)	=	7.2
C(s2,	a2,	sG)	=	1

SG

C(sG,	a2,	sG)	=	0

C(sG,	a1,	sG)	=	0

C(s2,	a2,	s2)	=	-3

T(s2,	a2,	sG)	=	0.3

T(s2,	a2,	sG)	=	0.7

No cost-free
“loops” allowed!

,	also	not!

a2

a1

SSP	MDP	Example

13

S1 S2

a1

a1
C(s2,	a1,	s1)	=	0

C(s1,	a1,	s2)	=	1

a2
a2

C(s1,	a2,	s1)	=	7.2
C(s2,	a2,	sG)	=	1

SG

C(sG,	a2,	sG)	=	0

C(sG,	a1,	sG)	=	0

C(s2,	a2,	s2)	=	1

T(s2,	a2,	sG)	=	0.3

T(s2,	a2,	sG)	=	0.7

SSP	MDPs:	Optimality	Principle
For	an	SSP	MDP,	let:	

– Vπ(h)	=	Eh[C1	+	C2	+	…]	for	all	h

Then:

– V* exists	and	is	stationary	Markovian,	π* exists	and	is	stationary	
deterministic	Markovian

– For	all	s:

V*(s)	=	mina	in	A	[∑s’	in	S T(s,	a,	s’)	[C(s,	a,	s’)	+	V*(s’)]]
π*(s)	=	argmina in	A [∑s’	in	S T(s,	a,	s’)	[C(s,	a,	s’)	+	V*(s’)]]

14

π
Exp. Lin. Add. Utility

Every policy either takes a
finite exp. # of steps to reach
a goal, or has an infinite cost.

For every history,
the value of a policy

is well-defined!

Fundamentals	of	MDPs

üGeneral	MDP	Definition
üExpected	Linear	Additive	Utility
üThe	Optimality	Principle
üFinite-Horizon	MDPs
üInfinite-Horizon	Discounted-Reward	MDPs
üStochastic	Shortest-Path	MDPs
• A	Hierarchy	of	MDP	Classes
• Factored	MDPs
• Computational	Complexity

15

SSP and	Other MDP	Classes

16

IHDR

E.g.,	Indefinite-horizon	discounted	reward

FHIHDR SSP

SSP and	Other	MDP	Classes

• FH =>	SSP:	turn	all	states	(s,	L)	into	goals
• IHDR =>	SSP:	add	γ-probability	transitions	to	goal
• Will	concentrate	on	SSP in	the	rest	of	the	tutorial

17

SSPIHDR FH

IHDR	à SSP

18

+1
+2

+2

+1 -10

IHDR	à SSP
1)	Invert	rewards	to	costs

19

-2	

-2	

+10	

-1	

-1	

-1	

1.0

IHDR	à SSP
1)	Invert	rewards	to	costs
2)	Add	new	goal	state	&	edges	from	absorbing	states
3)	∀s,a,	add	edges	to	goal	with	P	=	1-𝛾
4)	Normalize

20

-2	

+10	

-1	

G
1-𝛾
0

0

½𝛾

½𝛾

𝛾

𝛾

½𝛾

-1	

-2	

1-𝛾0 0

1-𝛾

Computational	Complexity	of	MDPs

• Good	news:
– Solving	IHDR,	SSP in	flat	representation	is	P-complete

– Solving	FH	in	flat	representation	is	P-hard

– That	is,	they	don’t	benefit	from	parallelization,	but	are	solvable	
in	polynomial	time!

22

Computational	Complexity	of	MDPs

• Bad	news:
– Solving	FH,	IHDR,	SSP in	factored	representation	is	EXPTIME-
complete!

– Flat	representation	doesn’t	make	MDPs	harder	to	solve,	it	
makes	big	ones	easier	to	describe.

23

Running	Example

26

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41
a3 C=2

All	costs	1	unless	otherwise	marked

V1= 0

V1= 2

Q2(s4,a40) = 5 + 0
Q2(s4,a41) = 2+ 0.6×0

+ 0.4×2
= 2.8

min

V2= 2.8

agreedy = a41

a41

a40

s4

sg

s3

Bellman	Backup

C=5

C=2

sg
Pr=0.6

s4

s3
Pr=0.4

a40
C=5

a41
a3 C=2

Value	Iteration	[Bellman	57]

28

iteration n

ℇ-consistency

termination
condition

No restriction on initial value function

Running	Example

29

s0

s2

s1

sg
Pr=0.6

a00 s4

s3
Pr=0.4

a01

a21 a1

a20 a40
C=5

a41
a3 C=2

n Vn(s0) Vn(s1) Vn(s2) Vn(s3) Vn(s4)
0 3 3 2 2 1

1 3 3 2 2 2.8

2 3 3 3.8 3.8 2.8

3 4 4.8 3.8 3.8 3.52

4 4.8 4.8 4.52 4.52 3.52

5 5.52 5.52 4.52 4.52 3.808

20 5.99921 5.99921 4.99969 4.99969 3.99969

Convergence	&	Optimality

• For	an	SSP	MDP,	∀ s ∊ S,	

lim nà∞ Vn(s)	=	V*(s)

irrespective	of	the	initialization.	

30

VI	à Asynchronous	VI

• Is	backing	up	all states	in	an	iteration	essential?
– No!

• States	may	be	backed	up	
– as	many	times
– in	any	order

• If	no	state	gets	starved
– convergence	properties	still	hold!!

35

Residual	wrt Value	Function	V			(ResV)

• Residual	at	s	with	respect	to	V
– magnitude(ΔV(s))	after	one	Bellman	backup	at	s

• Residual	wrt respect	to	V
– max	residual
– ResV =	maxs (ResV(s))

36

ResV <∊
(∊-consistency)

Resv(s)	=	| Vi(s)	– Min		Σ T(s,a,s’)[C(s,a,s’)	+	Vi(s’)]	|
a ∊𝓐 s ∊𝓢

(General)	Asynchronous	VI

37

Heuristic	Search	Algorithms
• Definitions

• Find	&	Revise	Scheme.

• LAO*	and	Extensions

• RTDP	and	Extensions

• Other	uses	of	Heuristics/Bounds

• Heuristic	Design

38

Notation

39

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

A1 A2

Heuristic	Search

• Insight	1
– knowledge	of	a	start	state	to	save	on	computation

~	(all	sources	shortest	path	à single	source	shortest	path)

• Insight	2
– additional	knowledge	in	the	form	of	heuristic	function

~	(dfs/bfsà A*)

40

Model

• SSP	(as	before)	with	an	additional	start	state	s0
– denoted	by	SSPs0

• What	is	the	solution	to	an	SSPs0
• Policy	(Sà A)?
– are	states	that	are	not	reachable	from	s0 relevant?
– states	that	are	never	visited	(even	though	reachable)?

41

Partial	Policy

• Define Partial	policy
– π:	S’	à A,	where	S’⊆ S

• Define Partial	policy	closed	w.r.t.	a	state	s.
– is	a	partial	policy	πs
– defined	for	all	states	s’ reachable	by	πs starting	from	s

42

Partial	policy	closed	wrt s0

43

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

πs0(s0)=	a1
πs0(s1)=	a2
πs0(s2)=	a1

Is this policy closed wrt s0?

a1 is	left	action
a2 is	on	right

Partial	policy	closed	wrt s0

44

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

πs0(s0)=	a1
πs0(s1)=	a2
πs0(s2)=	a1
πs0(s6)=	a1

Is this policy closed wrt s0?

a1 is	left	action
a2 is	on	right

Policy	Graph	of	πs0

45

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

s9

πs0(s0)=	a1
πs0(s1)=	a2
πs0(s2)=	a1
πs0(s6)=	a1

a1 is	left	action
a2 is	on	right

Greedy	Policy	Graph

• Define	greedy	policy:	πV =	argminaQV(s,a)

• Define	greedy	partial	policy	rooted	at	s0
– Partial	policy	rooted	at	s0
– Greedy	policy
– denoted	by	π

• Define	greedy	policy	graph
– Policy	graph	of	π :	denoted	by		

46

¼Vs0

¼Vs0 GVs0

Heuristic	Function

• h(s):	SàR
– estimates	V*(s)	
– gives	an	indication	about	“goodness”	of	a	state
– usually	used	in	initialization	V0(s)	=	h(s)
– helps	us	avoid	seemingly	bad	states

• Define	admissible heuristic
– Optimistic	(underestimates	cost)
– h(s)	≤	V*(s)

47

Admissible	Heuristics
• Basic	idea
– Relax	probabilistic	domain	to	deterministic	domain
– Use	heuristics(classical	planning)

• All-outcome	Determinization
– For	each	outcome	create	a	different	action

• Admissible	Heuristics
– Cheapest	cost	solution	for	determinized domain
– Classical	heuristics	over	determinized domain

48

s1s

s2

a

s1s

s2

a1
a2

Heuristic	Search	Algorithms
• Definitions

• Find	&	Revise	Scheme.

• LAO*	and	Extensions

• RTDP	and	Extensions

• Other	uses	of	Heuristics/Bounds

• Heuristic	Design

49

A	General	Scheme	for	
Heuristic	Search	in	MDPs

• Two	(over)simplified	intuitions
– Focus	on	states	in	greedy	policy	wrt. V	rooted	at	s0
– Focus	on	states	with	residual	>	ε

• Find	&	Revise:	
– repeat
• find	a	state	that	satisfies	the	two	properties	above
• perform	a	Bellman	backup

– until	no	such	state	remains

50

FIND	&	REVISE	[Bonet&Geffner 03a]

• Convergence	to	V*	is	guaranteed
– if	heuristic	function	is	admissible
– ~no	state	gets	starved	in	∞ FIND	steps

51

(perform Bellman backups)

F&R	and	Monotonicity

• Vk ≤p V*⇒ Vn ≤p V*	(Vn monotonic	from	below)
If	h	is	admissible:	V0 =	h(s)	≤p V*
⇒Vn ≤p V*	(∀n)		

Q*(s,a1)	<	Q(s,a2)	<	Q*(s,a2)	aaaa
a2 can’t	be	optimal	aaaa

52

sQ(s,a1)=5

.

.

Q(s,	a2)=10

.

. All	values	<	V*,	Q*All	values	=	V*,	Q*

Real	Time	Dynamic	Programming
[Barto et	al	95]

• Original	Motivation
– agent	acting	in	the	real	world

• Trial	
– simulate	greedy	policy	starting	from	start	state;
– perform	Bellman	backup	on	visited	states
– stop	when	you	hit	the	goal

• RTDP:	repeat	trials	forever
– Converges	in	the	limit	#trials	à ∞

84

Trial

85

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

Trial

86

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

Trial

87

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h h h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

88

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

89

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

h h

Trial

90

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

V h

Trial

91

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h

Trial

92

s0

Sg

s1 s2 s3 s4

s5 s6 s7 s8

h h V h

V

start at start state

repeat

perform a Bellman backup

simulate greedy action

until hit the goal

V h

Backup all states
on trajectory

RTDP

repeat
forever

Real	Time	Dynamic	Programming
[Barto et	al	95]

• Original	Motivation
– agent	acting	in	the	real	world

• Trial	
– simulate	greedy	policy	starting	from	start	state;
– perform	Bellman	backup	on	visited	states
– stop	when	you	hit	the	goal

• RTDP:	repeat	trials	forever
– Converges	in	the	limit	#trials	à ∞

93

No termination
condition!

RTDP	Family	of	Algorithms
repeat

s	ß s0

repeat	//trials
REVISE	s;	identify	agreedy
FIND:	pick	s’	s.t. T(s,	agreedy,	s’)	>	0
s	ß s’

until	s	∊ G

until	termination	test

94

• Admissible	heuristic	&	monotonicity
⇒ V(s)	≤ V*(s)
⇒ Q(s,a)	≤ Q*(s,a)

• Label	state,	s,	as	solved	
– if	V(s)	has	converged best	action

ResV(s) < ε
⇒ V(s) won’t change!
label s as solved

sgs

Labeling	(contd)

96

best action

ResV(s) < ε
s' already solved
⇒ V(s) won’t change!

label s as solved

sgs

s'

Labeling	(contd)

97

best action

ResV(s) < ε
s' already solved
⇒ V(s) won’t change!

label s as solved

sgs

s'

best action

ResV(s) < ε
ResV(s’) < ε

V(s), V(s’) won’t change!
label s, s’ as solved

sgs

s'best action

Labeled	RTDP	[Bonet&Geffner 03b]
repeat

s	ß s0
label	all	goal	states	as	solved

repeat	//trials
REVISE	s;	 identify	agreedy
FIND:	sample	s’	from	T(s,	agreedy,	s’)
s	ß s’

until	s	is	solved

for	all	states	s	in	the	trial	
try	to	label	s	as	solved

until	s0 is	solved

98

• terminates	in	finite	time
– due	to	labeling	procedure

• anytime
– focuses	attention	on	more	probable	states

• fast	convergence
– focuses	attention	on	unconverged states

99

LRTDP

LRTDP	Experiments

100

large-ring large-square

0

50

100

150

200

250

300

350

400

450

500

2 2.5 3 3.5 4 4.5 5 5.5 6
elapsed time

RTDP
VI

0

50

100

150

200

250

300

350

400

450

500

30 40 50 60 70 80
elapsed time

RTDP
VI

Figure 1: Quality pro£les: Average cost to the goal vs. time for Value Iteration and RTDP over two racetracks.

the number of time steps.5
The states are tuples (x, y, dx, dy) that represent the po-

sition and speed of the car in the x, y dimensions. The
actions are pairs a = (ax, ay) of instantaneous accelera-
tions where ax, ay ∈ {−1, 0, 1}. Uncertainty in this domain
comes from assuming that the road is ’slippery’ and as a re-
sult, the car may fail to accelerate. More precisely, an action
a = (ax, ay) has its intended effect 90% of the time; 10% of
the time the action effects correspond to those of the action
a0 = (0, 0). Also, when the car hits a wall, its velocity is set
to zero and its position is left intact (this is different than in
(Barto, Bradtke, & Singh 1995) where the car is moved to
the start position).
For the experiments we consider racetracks of two shapes:

one is a ring with 33068 states (large-ring), the other is
a full square with 383950 states (large-square). In both
cases, the task is to drive the car from one extreme in the
racetrack to its opposite extreme. Optimal policies for these
problems turn out to have expected costs (number of steps)
14.96 and 10.48 respectively, and the percentages of relevant
states (i.e., those reachable through an optimal policy) are
11.47% and 0.25% respectively.
Figure 1 shows the quality of the policies found as a func-

tion of time for both value iteration and RTDP. In both cases
we use V = h = 0 as the initial value function; i.e., no (in-
formative) heuristic is used in RTDP. Still, the quality pro£le
for RTDP is much better: it produces a policy that is practi-
cally as good as the one produced eventually by VI in almost
half of the time. Moreover, by the time RTDP yields a policy
with an average cost close to optimal, VI yields a policy with
an average cost that is more than 10 times higher.
The problem with RTDP, on the other hand, is conver-

gence. Indeed, while in these examples RTDP produces near-
to-optimal policies at times 3 and 40 seconds respectively, it
converges, in the sense de£ned above, in more than 10 min-
utes. Value iteration, on the other hand, converges in 5.435

5So far we have only considered a single initial state s0, yet it
is simple to modify the algorithm and extend the theoretical results
for the case of multiple initial states.

Figure 2: Racetrack for large-ring. The initial and goal
positions marked on the left and right

and 78.720 seconds respectively.

Labeled RTDP
The fast improvement phase in RTDP as well as its slow
convergence phase are both consequences of an exploration
strategy – greedy simulation – that privileges the states that
occur in the most likely paths resulting from the greedy pol-
icy. These are the states that are most relevant given the
current value function, and that’s why updating them pro-
duces such a large impact. Yet states along less likely paths
are also needed for convergence, but these states appear less
often in the simulations. This suggests that a potential way
for improving the convergence of RTDP is by adding some
noise in the simulation.6 Here, however, we take a differ-
ent approach that has interesting consequences both from a
practical and a theoretical point of view.

6This is different than adding noise in the action selection
rule as done in reinforcement learning algorithms (Sutton & Barto
1998) In reinforcement learning, noise is needed in the action se-
lection rule to guarantee optimality while no such thing is needed
in RTDP. This is because full DP updates as used in RTDP, unlike
partial DP updates as used in Q or TD-learning, preserve admissi-
bility.

Racetrack	Domain

Start Goal

101

large-ring large-square

0

50

100

150

200

250

300

350

400

450

500

2 4 6 8 10 12
elapsed time

RTDP
VI

LAO
LRTDP

0

50

100

150

200

250

300

350

400

450

500

20 30 40 50 60 70 80 90 100 110
elapsed time

RTDP
VI

LAO
LRTDP

Figure 3: Quality pro£les: Average cost to the goal vs. time for RTDP, VI, ILAO* and LRTDP with the heuristic h = 0 and
ϵ = 10−3.

problem |S| V (s0) % rel. hmin(s0) t. hmin

small-b 9312 11.084 13.96 10.00 0.740
large-b 23880 17.147 19.36 16.00 2.226
h-track 53597 38.433 17.22 36.00 8.714
small-r 5895 10.377 10.65 10.00 0.413
large-r 33068 14.960 11.47 14.00 3.035
small-s 42071 7.508 1.67 7.00 3.139
large-s 383950 10.484 0.25 10.00 41.626
small-y 81775 13.764 1.35 13.00 8.623
large-y 239089 15.462 0.86 14.00 29.614

Table 1: Information about the different ractrack instances:
size, expected cost of the optimal policy from s0, percentage
of relevant states, heuristic for s0 and time spent in seconds
for computing hmin.

Problems
The problems we consider are all instances of the racetrack
domain from (Barto, Bradtke, & Singh 1995) discussed ear-
lier. We consider the instances small-b and large-
b from (Barto, Bradtke, & Singh 1995), h-track from
(Hansen & Zilberstein 2001),8 and three other tracks, ring,
square, and y (small and large) with the corresponding
shapes. Table 1 contains relevant information about these
instances: their size, the expected cost of the optimal pol-
icy from s0, and the percentage of relevant states.9 The last
two columns show information about the heuristic hmin: the
value for hmin(s0) and the total time involved in the com-
putation of heuristic values in the LRTDP and LAO* algo-
rithms for the different instances. Interestingly, these times
are roughly equal for both algorithms across the different
problem instances. Note that the heuristic provides a pretty
tight lower bound yet it is somewhat expensive. Below, we
will run the experiments with both the heuristic hmin and
the heuristic h = 0.

8Taken from the source code of LAO*.
9All these problems have multiple initial states so the value

V ∗(s0) (and hmin(s0)) in the table is the average over the intial
states.

Algorithms
We consider the following four algorithms in the compari-
son: VI, RTDP, LRTDP, and a variant of LAO*, called Im-
proved LAO* in (Hansen & Zilberstein 2001). Due to cycles,
the standard backward induction step for backing up values
in AO* is replaced in LAO* by a full DP step. Like AO*,
LAO* gradually grows an explicit graph or envelope, origi-
nally including the state s0 only, and after every iteration, it
computes the best policy over this graph. LAO* stops when
the graph is closed with respect to the policy. From a prac-
tical point of view, LAO* is slow; Improved LAO* (ILAO*)
is a variation of LAO* in (Hansen & Zilberstein 2001) that
gives up on some of the properties of LAO* but runs much
faster.10
The four algorithms have been implemented by us in C++.

The results have been obtained on a Sun-Fire 280-R with
1GB of RAM and a clock speed of 750Mhz.

Results
Curves in Fig. 3 display the evolution of the average cost to
the goal as a function of time for the different algorithms,
with averages computed as explained before, for two prob-
lems: large-ring and large-square. The curves
correspond to ϵ = 10−3 and h = 0. RTDP shows the best
pro£le, quickly producing policies with average costs near
optimal, with LRTDP close behind, and VI and ILAO* far-
ther.
Table 2 shows the times needed for convergence (in sec-

onds) for h = 0 and ϵ = 10−3 (results for other values of
ϵ are similar). The times for RTDP are not reported as they
exceed the cutoff time for convergence (10 minutes) in all
instances. Note that for the heuristic h = 0, LRTDP con-
verges faster than VI in 6 of the 8 problems, with problem
h-track, LRTDP running behind by less than 1% of the

10 ILAO* is presented in (Hansen & Zilberstein 2001) as an im-
plementation of LAO*, yet it is a different algorithm with different
properties. In particular, ILAO*, unlike, LAO* does not maintain
an optimal policy over the explicit graph across iterations.

Co
st

Computation	Time
algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(h = 0) 1.101 4.045 15.451 0.662 5.435 5.896 78.720 16.418 61.773

ILAO*(h = 0) 2.568 11.794 43.591 1.114 11.166 12.212 250.739 57.488 182.649
LRTDP(h = 0) 0.885 7.116 15.591 0.431 4.275 3.238 49.312 9.393 34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function h = 0 and ϵ = 10−3. Times for
RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(hmin) 1.317 4.093 12.693 0.737 5.932 6.855 102.946 17.636 66.253

ILAO*(hmin) 1.161 2.910 11.401 0.309 3.514 0.387 1.055 0.692 1.367
LRTDP(hmin) 0.521 2.660 7.944 0.187 1.599 0.259 0.653 0.336 0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function h = hmin and ϵ = 10−3. Times
for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

time taken by VI. ILAO* takes longer yet also solves all
problems in a reasonable time. The reason that LRTDP, like
RTDP, can behave so well even in the absence of an infor-
mative heuristic function is because the focused search and
updates quickly boost the values that appear most relevant so
that they soon provide such heuristic function, an heuristic
function that has not been given but has been learned in the
sense of (Korf 1990). The difference between the heuristic-
search approaches such as LRTDP and ILAO* on the one
hand, and classical DP methods like VI on the other, is more
prominent when an informative heuristic like hmin is used
to seed the value function. Table 3 shows the correspond-
ing results, where the £rst three rows show the convergence
times for VI, ILAO* and LRTDP with the initial values ob-
tained with the heuristic hmin but with the time spent com-
puting such heuristic values excluded. An average of such
times is displayed in the last column of Table 1, as these
times are roughly equal for the different methods (the stan-
dard deviation in each case is less than 1% of the average
time). Clearly, ILAO* and LRTDP make use of the heuristic
information much more effectively than VI, and while the
computation of the heuristic values is expensive, LRTDPwith
hmin, taking into account the time to compute the heuristic
values, remains competitive with VI with h = 0 and with
LRTDP with h = 0. E.g., for large-square the overall
time for the former is 0.653 + 41.626 = 42.279 while the
latter two times are 78.720 and 49.312. Something similar
occurs in small-y and small-ring. Of course, these
results could be improved by speeding up the computation
of the heuristic hmin, something we are currently working
on.

Summary
We have introduced a labeling scheme into RTDP that speeds
up its convergence while retaining its good anytime behav-
ior. While due to the presence of cycles, the labels cannot
be computed in a recursive, bottom-up fashion as in stan-
dard AO* implementations, they can be computed quite fast
by means of a search procedure that when cannot label a
state as solved, improves the value of some states by a £nite
amount. The labeling procedure has interesting theoretical
and practical properties. On the theoretical side, the num-
ber of Labeled RTDP trials, unlike the number of RTDP trials

is bounded; on the practical side, Labeled RTDP converges
much faster than RTDP, and appears to converge faster than
Value Iteration and LAO*, while exhibiting a better anytime
pro£le. Also, Labeled RTDP often converges faster than VI
even with the heuristic h = 0, suggesting that the proposed
algorithm may have a quite general scope.
We are currently working on alternative methods for com-

puting or approximating the heuristic hmin proposed, and
variations of the labeling procedure for obtaining practical
methods for solving larger problems.

Acknowledgments: We thank Eric Hansen and Shlomo Zil-
berstein for making the code for LAO* available to us. Blai
Bonet is supported by grants fromNSF, ONR, AFOSR, DoD
MURI program, and by a USB/CONICIT fellowship from
Venezuela.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Arti£cial Intel-
ligence 72:81–138.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scienti£c.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control, (2 Vols). Athena Scienti£c.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien,
S.; Kambhampati, S.; and Knoblock, C., eds., Proc. 5th
International Conf. on Arti£cial Intelligence Planning and
Scheduling, 52–61. Breckenridge, CO: AAAI Press.
Bonet, B., and Geffner, H. 2001a. GPT: a tool for planning
with uncertainty and partial information. In Cimatti, A.;
Geffner, H.; Giunchiglia, E.; and Rintanen, J., eds., Proc.
IJCAI-01Workshop on Planning with Uncertainty and Par-
tial Information, 82–87.
Bonet, B., and Geffner, H. 2001b. Planning and control
in arti£cial intelligence: A unifying perspective. Applied
Intelligence 14(3):237–252.
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning un-

algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(h = 0) 1.101 4.045 15.451 0.662 5.435 5.896 78.720 16.418 61.773

ILAO*(h = 0) 2.568 11.794 43.591 1.114 11.166 12.212 250.739 57.488 182.649
LRTDP(h = 0) 0.885 7.116 15.591 0.431 4.275 3.238 49.312 9.393 34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function h = 0 and ϵ = 10−3. Times for
RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

algorithm small-b large-b h-track small-r large-r small-s large-s small-y large-y
VI(hmin) 1.317 4.093 12.693 0.737 5.932 6.855 102.946 17.636 66.253

ILAO*(hmin) 1.161 2.910 11.401 0.309 3.514 0.387 1.055 0.692 1.367
LRTDP(hmin) 0.521 2.660 7.944 0.187 1.599 0.259 0.653 0.336 0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function h = hmin and ϵ = 10−3. Times
for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

time taken by VI. ILAO* takes longer yet also solves all
problems in a reasonable time. The reason that LRTDP, like
RTDP, can behave so well even in the absence of an infor-
mative heuristic function is because the focused search and
updates quickly boost the values that appear most relevant so
that they soon provide such heuristic function, an heuristic
function that has not been given but has been learned in the
sense of (Korf 1990). The difference between the heuristic-
search approaches such as LRTDP and ILAO* on the one
hand, and classical DP methods like VI on the other, is more
prominent when an informative heuristic like hmin is used
to seed the value function. Table 3 shows the correspond-
ing results, where the £rst three rows show the convergence
times for VI, ILAO* and LRTDP with the initial values ob-
tained with the heuristic hmin but with the time spent com-
puting such heuristic values excluded. An average of such
times is displayed in the last column of Table 1, as these
times are roughly equal for the different methods (the stan-
dard deviation in each case is less than 1% of the average
time). Clearly, ILAO* and LRTDP make use of the heuristic
information much more effectively than VI, and while the
computation of the heuristic values is expensive, LRTDPwith
hmin, taking into account the time to compute the heuristic
values, remains competitive with VI with h = 0 and with
LRTDP with h = 0. E.g., for large-square the overall
time for the former is 0.653 + 41.626 = 42.279 while the
latter two times are 78.720 and 49.312. Something similar
occurs in small-y and small-ring. Of course, these
results could be improved by speeding up the computation
of the heuristic hmin, something we are currently working
on.

Summary
We have introduced a labeling scheme into RTDP that speeds
up its convergence while retaining its good anytime behav-
ior. While due to the presence of cycles, the labels cannot
be computed in a recursive, bottom-up fashion as in stan-
dard AO* implementations, they can be computed quite fast
by means of a search procedure that when cannot label a
state as solved, improves the value of some states by a £nite
amount. The labeling procedure has interesting theoretical
and practical properties. On the theoretical side, the num-
ber of Labeled RTDP trials, unlike the number of RTDP trials

is bounded; on the practical side, Labeled RTDP converges
much faster than RTDP, and appears to converge faster than
Value Iteration and LAO*, while exhibiting a better anytime
pro£le. Also, Labeled RTDP often converges faster than VI
even with the heuristic h = 0, suggesting that the proposed
algorithm may have a quite general scope.
We are currently working on alternative methods for com-

puting or approximating the heuristic hmin proposed, and
variations of the labeling procedure for obtaining practical
methods for solving larger problems.

Acknowledgments: We thank Eric Hansen and Shlomo Zil-
berstein for making the code for LAO* available to us. Blai
Bonet is supported by grants fromNSF, ONR, AFOSR, DoD
MURI program, and by a USB/CONICIT fellowship from
Venezuela.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Arti£cial Intel-
ligence 72:81–138.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic Pro-
gramming. Athena Scienti£c.
Bertsekas, D. 1995. Dynamic Programming and Optimal
Control, (2 Vols). Athena Scienti£c.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien,
S.; Kambhampati, S.; and Knoblock, C., eds., Proc. 5th
International Conf. on Arti£cial Intelligence Planning and
Scheduling, 52–61. Breckenridge, CO: AAAI Press.
Bonet, B., and Geffner, H. 2001a. GPT: a tool for planning
with uncertainty and partial information. In Cimatti, A.;
Geffner, H.; Giunchiglia, E.; and Rintanen, J., eds., Proc.
IJCAI-01Workshop on Planning with Uncertainty and Par-
tial Information, 82–87.
Bonet, B., and Geffner, H. 2001b. Planning and control
in arti£cial intelligence: A unifying perspective. Applied
Intelligence 14(3):237–252.
Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning un-

Results

Picking	a	Successor	Take	2

• Labeled	RTDP/RTDP:	sample	s’	∝ T(s,	agreedy,	s’)
– Advantages
• more	probable	states	are	explored	first
• no	time	wasted	on	converged	states

– Disadvantages
• Convergence	test	is	a	hard	constraint
• Sampling	ignores	“amount”	of	convergence

• If	we	knew	how	much	V(s)	is	expected	to	change?
– sample	s’	∝ expected	change

102

Upper	Bounds	in	SSPs

• RTDP/LAO*	maintain	lower	bounds
– call	it	Vl

• Additionally	associate	upper	bound	with	s
– Vu(s)	≥	V*(s)

• Define	gap(s)	=	Vu(s)	– Vl(s)
– low	gap(s):	more	converged	a	state
– high	gap(s):	more	expected	change	in	its	value

103

Backups	on	Bounds
• Recall	monotonicity

• Backups	on	lower	bound	
– continue	to	be	lower	bounds

• Backups	on	upper	bound
– continues	to	be	upper	bounds	

• Intuitively
– Vl will	increase	to	converge	to	V*
– Vu will	decrease	to	converge	to	V*

104

Bounded	RTDP	[McMahan	et	al	05]

repeat
s	ß s0

repeat	//trials
identify	agreedy based	on	Vl
FIND:	sample	s’	∝ T(s,	agreedy,	s’).gap(s’)
s	ß s’

until	gap(s)	<	ε

for	all	states	s	in	trial	in	reverse	order
REVISE	s

until	gap(s0)	<	ε

105

BRTDP	Results

106

Bounded Real-Time Dynamic Programming

A (0.94s) B (2.43s) C (1.81s) D (43.98s)
0

0.2

0.4

0.6

0.8

1

Informed Initialization

Problem

Fr
ac

to
n

of
 lo

ng
es

t t
im

e

BRTDP
LRTDP
HDP

A (2.11s) B (10.13s) C (3.41s) D (45.42s)
0

0.2

0.4

0.6

0.8

1

Uninformed Initialization

Problem
Fr

ac
to

n
of

 lo
ng

es
t t

im
e

BRTDP
LRTDP
HDP

Figure 4. CPU time required for convergence with informed (left) and uninformed (right) initialization of the algorithms.

informed BRTDP outperforms informed HDP on (D)
by a factor of 1.8. More importantly, on (B) and
(D) HDP and LRTDP visit all of S before conver-
gence, while BRTDP does not: for example, on (B),
informed BRTDP visits 28% of S and only brings
|vu(x)− vℓ(x)| ≤ α for 10% of S. We could make the
performance gap arbitrarily large by adding additional
states to the MDPs.

7. Conclusions

We have shown BRTDP paired with DS-MPI is a pow-
erful combination for both offline and anytime appli-
cations. BRTDP can converge quickly when other al-
gorithms cannot, and it can return policies with strong
performance guarantees at any time. In future work
we hope to generalize DS-MPI and apply it to other
algorithms, as well as continue to develop BRTDP.

Acknowledgments This work was supported in
part by NSF grant EF-0331657.

References

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995).
Learning to act using real-time dynamic program-
ming. Artif. Intell., 72, 81–138.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Belmont, MA: Athena Sci-
entific.

Bonet, B., & Geffner, H. (2003a). Faster heuristic
search algorithms for planning with uncertainty and
full feedback. Proc. 18th International Joint Conf.
on Artificial Intelligence (pp. 1233–1238). Acapulco,
Mexico: Morgan Kaufmann.

Bonet, B., & Geffner, H. (2003b). Labeled RTDP: Im-

proving the convergence of real-time dynamic pro-
gramming. Proc. of ICAPS-03 (pp. 12–21).

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A.
(1995). Planning under time constraints in stochas-
tic domains. Artif. Intell., 76, 35–74.

Ferguson, D., & Stentz, A. T. (2004). Focussed dy-
namic programming: Extensive comparative results
(Technical Report CMU-RI-TR-04-13). Robotics
Institute, Carnegie Mellon University, Pittsburgh,
PA.

Hansen, E. A., & Zilberstein, S. (2001). LAO*: a
heuristic search algorithm that finds solutions with
loops. Artif. Intell., 129, 35–62.

McMahan, H. B., & Gordon, G. J. (2005). Fast exact
planning in markov decision processes. To appear in
ICAPS.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V.,
Schulte, J., Tse, B., Berger, E., & Liang, E. (2004).
Inverted autonomous helicopter flight via reinforce-
ment learning. ISER. Springer.

Roy, N., Gordon, G., & Thrun, S. (2004). Finding
approximate POMDP solutions through belief com-
pression. Journal of Artificial Intelligence Research.
To appear.

Smith, T., & Simmons, R. (2004). Heuristic search
value iteration for pomdps. Proc. of UAI 2004.
Banff, Alberta.

A,	B	– racetrack;	C,D	gridworld.		A,C	have	sparse	noise;	B,D	much	noise

Focused	RTDP	[Smith&Simmons 06]

• Similar	to	Bounded	RTDP	except
– a	more	sophisticated	definition	of	priority	that	
combines	gap	and	prob.	of	reaching	the	state

– adaptively	increasing	the	max-trial	length

107

Is	that	the	best	we	can	do?

Picking	a	Successor	Take	3

[Slide	adapted	from	Scott	Sanner]	108

Q(s,a1) Q(s,a2)

Q(s,a2)Q(s,a1)

Q(s,a2)Q(s,a1)

Q(s,a2)Q(s,a1)

Co
st

Co
st

A B

DC

• What	is	the	expected	value	of	knowing	V(s’)

• Estimates	EVPI(s’)
– using	Bayesian	updates
– picks	s’	with	maximum	EVPI

109

Value	of	Perfect	Information	RTDP	[Sanner et	al	09]

Focused	RTDP	Results

110

Algorithm large-b large-b-3 large-b-w large-ring large-ring-3 large-ring-w
RTDP 5.30 (5.19) 10.27 (9.12) 149.07 (190.55) 3.39 (4.81) 8.05 (8.56) 16.44 (91.67)
LRTDP 1.21 (3.52) 1.63 (4.08) 1.96 (14.38) 1.74 (5.19) 2.14 (5.71) 3.13 (22.15)
HDP 1.29 (3.43) 1.86 (4.12) 2.87 (15.99) 1.27 (4.35) 2.74 (6.41) 2.92 (20.14)
HDP+L 1.29 (3.75) 1.86 (4.55) 2.87 (16.88) 1.27 (4.70) 2.74 (7.02) 2.92 (21.12)
FRTDP 0.29 (2.10) 0.49 (2.38) 0.84 (10.71) 0.22 (2.60) 0.43 (3.04) 0.99 (14.73)

Figure 1: Millions of backups before convergence with ✏ = 10

�3. Each entry gives the number of millions of backups, with
the corresponding wallclock time (seconds) in parentheses. The fastest time for each problem is shown in bold.

would show more speedup on the -3 and -w problem vari-
ants with more uncertainty; in fact its speedup was about
the same on -3 problems and smaller on -w problems. We
do not yet understand why this is the case. By construc-
tion, HDP and HDP+L have identical convergence proper-
ties in terms of the number of backups required. As mea-
sured in wallclock time, lower bound updating for HDP+L
introduces an additional cost overhead of about 10%.

Fig. 2 reports anytime performance of three of the
algorithms (HDP, HDP+L, and FRTDP) on the two
problems where FRTDP showed the least convergence
time speedup (large-ring-w) and the most speedup
(large-ring-3) relative to HDP. The quality (expected
reward) of an algorithm’s output policy was measured at
each epoch by simulating the policy 1000 times, with each
execution terminated after 250 time steps if the goal was
not reached. Error bars are 2� confidence intervals. The
two algorithms that output policies based on a lower bound
(HDP+L and FRTDP) are seen to have significantly bet-
ter anytime performance. In fact, for large-ring-w,
FRTDP reaches a solution quality of -40 with about 40 times
fewer backups than HDP. In each plot, the solid line indicat-
ing FRTDP solution quality ends at the point where FRTDP
achieved convergence.

large-ring-w large-ring-3

-140

-120

-100

-80

-60

-40

-20

10
2

10
3

10
4

10
5

10
6

10
7

HDP

HDP+L

FRTDP

-140

-120

-100

-80

-60

-40

-20

10
3

10
4

10
5

10
6

10
7

HDP

HDP+L

FRTDP

Figure 2: Anytime performance comparison: solution qual-
ity vs. number of backups.

Conclusions
FRTDP improves RTDP by keeping a lower bound and mod-
ifying outcome selection and trial termination rules. These
modifications allow FRTDP to solve a broader class of prob-
lems, and in performance experiments FRTDP provided sig-
nificant speedup across all problems, requiring up to six
times fewer backups than HDP to reach convergence.

We also examined the separate performance impact of us-
ing a lower bound by implementing both HDP and HDP+L.
This technique can be usefully applied on its own to any
RTDP-like algorithm.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-

ligence 72(1-2):81–138.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic

Programming. Belmont, MA: Athena Scientific.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of IJCAI.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real time dynamic programming. In
Proc. of ICAPS.
Goodwin, R. 1996. Meta-Level Control for Decision The-

oretic Planners. Ph.D. Dissertation, School of Computer
Science, Carnegie Mellon Univ., CMU-CS-96-186.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial

Intelligence 129:35–62.
McMahan, H. B., and Gordon, G. J. 2005. Fast exact
planning in Markov decision processes. In Proc. of ICAPS.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proc. of ICML.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In Proc. of UAI.
Zhang, N. L., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable Markov
decision processes. Journal of AI Research 14:29–51.

Algorithm large-b large-b-3 large-b-w large-ring large-ring-3 large-ring-w
RTDP 5.30 (5.19) 10.27 (9.12) 149.07 (190.55) 3.39 (4.81) 8.05 (8.56) 16.44 (91.67)
LRTDP 1.21 (3.52) 1.63 (4.08) 1.96 (14.38) 1.74 (5.19) 2.14 (5.71) 3.13 (22.15)
HDP 1.29 (3.43) 1.86 (4.12) 2.87 (15.99) 1.27 (4.35) 2.74 (6.41) 2.92 (20.14)
HDP+L 1.29 (3.75) 1.86 (4.55) 2.87 (16.88) 1.27 (4.70) 2.74 (7.02) 2.92 (21.12)
FRTDP 0.29 (2.10) 0.49 (2.38) 0.84 (10.71) 0.22 (2.60) 0.43 (3.04) 0.99 (14.73)

Figure 1: Millions of backups before convergence with ✏ = 10

�3. Each entry gives the number of millions of backups, with
the corresponding wallclock time (seconds) in parentheses. The fastest time for each problem is shown in bold.

would show more speedup on the -3 and -w problem vari-
ants with more uncertainty; in fact its speedup was about
the same on -3 problems and smaller on -w problems. We
do not yet understand why this is the case. By construc-
tion, HDP and HDP+L have identical convergence proper-
ties in terms of the number of backups required. As mea-
sured in wallclock time, lower bound updating for HDP+L
introduces an additional cost overhead of about 10%.

Fig. 2 reports anytime performance of three of the
algorithms (HDP, HDP+L, and FRTDP) on the two
problems where FRTDP showed the least convergence
time speedup (large-ring-w) and the most speedup
(large-ring-3) relative to HDP. The quality (expected
reward) of an algorithm’s output policy was measured at
each epoch by simulating the policy 1000 times, with each
execution terminated after 250 time steps if the goal was
not reached. Error bars are 2� confidence intervals. The
two algorithms that output policies based on a lower bound
(HDP+L and FRTDP) are seen to have significantly bet-
ter anytime performance. In fact, for large-ring-w,
FRTDP reaches a solution quality of -40 with about 40 times
fewer backups than HDP. In each plot, the solid line indicat-
ing FRTDP solution quality ends at the point where FRTDP
achieved convergence.

large-ring-w large-ring-3

-140

-120

-100

-80

-60

-40

-20

10
2

10
3

10
4

10
5

10
6

10
7

HDP

HDP+L

FRTDP

-140

-120

-100

-80

-60

-40

-20

10
3

10
4

10
5

10
6

10
7

HDP

HDP+L

FRTDP

Figure 2: Anytime performance comparison: solution qual-
ity vs. number of backups.

Conclusions
FRTDP improves RTDP by keeping a lower bound and mod-
ifying outcome selection and trial termination rules. These
modifications allow FRTDP to solve a broader class of prob-
lems, and in performance experiments FRTDP provided sig-
nificant speedup across all problems, requiring up to six
times fewer backups than HDP to reach convergence.

We also examined the separate performance impact of us-
ing a lower bound by implementing both HDP and HDP+L.
This technique can be usefully applied on its own to any
RTDP-like algorithm.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-

ligence 72(1-2):81–138.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic

Programming. Belmont, MA: Athena Scientific.
Bonet, B., and Geffner, H. 2003a. Faster heuristic search
algorithms for planning with uncertainty and full feedback.
In Proc. of IJCAI.
Bonet, B., and Geffner, H. 2003b. Labeled RTDP: Improv-
ing the convergence of real time dynamic programming. In
Proc. of ICAPS.
Goodwin, R. 1996. Meta-Level Control for Decision The-

oretic Planners. Ph.D. Dissertation, School of Computer
Science, Carnegie Mellon Univ., CMU-CS-96-186.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial

Intelligence 129:35–62.
McMahan, H. B., and Gordon, G. J. 2005. Fast exact
planning in Markov decision processes. In Proc. of ICAPS.
McMahan, H. B.; Likhachev, M.; and Gordon, G. J. 2005.
Bounded real-time dynamic programming: RTDP with
monotone upper bounds and performance guarantees. In
Proc. of ICML.
Smith, T., and Simmons, R. 2004. Heuristic search value
iteration for POMDPs. In Proc. of UAI.
Zhang, N. L., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable Markov
decision processes. Journal of AI Research 14:29–51.

