
CS	573:	Artificial	Intelligence
Markov	Decision	Processes

Dan	Weld

University	of	Washington
Slides	by	Dan	Klein	&	Pieter	Abbeel /	UC	Berkeley.	(http://ai.berkeley.edu)	and	by	Mausam &	Andrey Kolobov

Example:	Grid	World

§ A	maze-like	problem
§ The	agent	lives	in	a	grid
§ Walls	block	the	agent’s	path

§ Noisy	movement:	actions	do	not	always	go	as	planned
§ 80%	of	the	time,	the	action	North	takes	the	agent	North	

(if	there	is	no	wall	there)
§ 10%	of	the	time,	North	takes	the	agent	West;	10%	East
§ If	there	is	a	wall	in	the	direction	the	agent	would	have	

been	taken,	the	agent	stays	put

§ The	agent	receives	rewards	each	time	step
§ Small	“living”	reward	each	step	(can	be	negative)
§ Big	rewards	come	at	the	end	(good	or	bad)

§ Goal:	~	maximize	sum	of	rewards

Markov	Decision	Processes

§ An	MDP	is	defined	by:
§ A	set	of	states	s	Î S
§ A	set	of	actions	a	Î A
§ A	transition	function	T(s,	a,	s’)

§ Probability	that	a	from	s	leads	to	s’,	i.e.,	P(s’|	s,	a)
§ Also	called	the	model	or	the	dynamics

§ A	reward	function	R(s,	a,	s’)	
§ Sometimes	just	R(s)	or	R(s’),	e.g.	in	R&N

§ A	start	state
§ Maybe	a	terminal	state

§ MDPs	are	non-deterministic	search	problems
§ One	way	to	solve	them	is	with	expectimax search
§ We’ll	have	a	new	tool	soon

Input:	MDP					Output:	Policy

Optimal	policy	when	R(s,	a,	s’)	=	-0.03	
for	all	non-terminals	s

§ In	deterministic	single-agent	search	problems,	
we	wanted	an	optimal	plan,	or	sequence	of	
actions,	from	start	to	a	goal

§ For	MDPs,	we	want	an	optimal	policy	p*:	S	→	A
§ A	policy	p gives	an	action	for	each	state
§ An	optimal	policy	is	one	that	maximizes								

expected	utility	if	followed
§ An	explicit	policy	defines	a	reflex	agent

§ Expectimax didn’t	output	an	entire	policy
§ It	computed	the	action	for	a	single	state	only

Example:	Racing
S		?
A		?
T		?
R		?
S0		?

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5	

0.5	

0.5	

0.5	

1.0	

1.0	

+1	

+1	

+1	

+2	

+2	

-10

Utilities	of	Sequences

Utilities	of	Sequences

§ What	preferences	should	an	agent	have	over	reward	sequences?

§ More	or	less?

§ Now	or	later?

§ Harder…

§ Infinite	sequences?

[1,	2,	2] [2,	3,	4]or

[0,	0,	1] [1,	0,	0]or

[1,	2,	3] [3,	1,	1]or

[1,	2,	1,	…] [2,	1,	2,	…]or

Discounting

§ It’s	reasonable	to	maximize	the	sum	of	rewards
§ It’s	also	reasonable	to	prefer	rewards	now	to	rewards	later
§ One	solution:	values	of	rewards	decay	exponentially

Worth	Now Worth	Next	Step Worth	In	Two	Steps

Discounting

§ How	to	discount?
§ Each	time	we	descend	a	level,	we	

multiply	by	the	discount

§ Why	discount?
§ Sooner	rewards	probably	do	have	higher	

utility	than	later	rewards
§ Also	helps	our	algorithms	converge

§ Example:	discount	of	0.5
§ U([1,2,3])	=	1*1	+	0.5*2	+	0.25*3	=	2.75
§ U([3,1,1])	=	1*3	+	0.5*1	+	0.25*1	=	3.75
§ U([1,2,3])	<	U([3,1,1])

Quiz:	Discounting

§ Given:

§ Actions:	East,	West,	and	Exit	(only	available	in	exit	states	a,	e)
§ Transitions:	deterministic

§ Quiz	1:	For	g =	1,	what	is	the	optimal	policy?

§ Quiz	2:	For	g =	0.1,	what	is	the	optimal	policy?

§ Quiz	3:	For	which	g are	West	and	East	equally	good	when	in	state	d?

Stationary	Preferences

§ Theorem:	if	we	assume	stationary	preferences:

§ Then:	there	are	only	two	ways	to	define	utilities

§ Additive	utility:

§ Discounted	utility:

Infinite	Utilities?!
§ Problem:	What	if	the	game	lasts	forever?		Do	we	get	infinite	rewards?

§ Solutions:

1. Discounting:	use	0	<	g <	1

Smaller	gmeans	smaller	“horizon” – shorter	term	focus

2. Finite	horizon:	(similar	to	depth-limited	search)
Add	utilities,	but	terminate	episodes	after	a	fixed	T-steps	lifetime
Gives	non-stationary	policies	(p depends	on	time	left)

3. Absorbing	state:	guarantee	that	for	every	policy,	a	terminal	state	(like	
“overheated” for	racing)	will	eventually	be	reached	(eg.	If	every action	had	a	
chance	of	overheating)

Recap:	Defining	MDPs

§ Markov	decision	processes:
§ Set	of	states	S
§ Start	state	s0
§ Set	of	actions	A
§ Transitions	P(s’|s,a)	(or	T(s,a,s’))
§ Rewards	R(s,a,s’)	(and	discount	g)

§ MDP	quantities	so	far:
§ Policy	=	Choice	of	action	for	each	state
§ Utility	=	sum	of	(discounted)	rewards

a

s

s,	a

s,a,s’
s’

Solving	MDPs

§ Value	Iteration
§ Asynchronous	VI
§ RTDP
§ Etc...

§ Policy	Iteration

§ Reinforcement	Learning

p*				Specifies	The	Optimal	Policy

p*(s)	=	optimal	action	from	state	s

V*	=	Optimal	Value	Function	

The	value (utility)	of	a	state	s:

V*(s)	

“expected	utility	starting	in	s	&	acting	optimally	forever”

Equivalently:	“value	of	s,	following p* forever”

Q*
The	value	(utility)	of	the	q-state	(s,a):

Q*(s,a)

“expected	utility	of	1)	starting	in	state	s
2)	first	taking	action	a
3)	acting optimally	(ala	p*)	forever after that”

Q*(s,a)	=	reward	from	executing	a	in	s then	ending	in	s’
plus…	discounted value	of	V*(s’)

The	Bellman	Equations

How	to	be	optimal:

Step	1:	Take	correct	first	action

Step	2:	Keep	being	optimal

The	Bellman	Equations

Definition	of	“optimal	utility”	via	expectimax recurrence	
gives	a	simple	one-step	lookahead relationship	amongst	
optimal	utility	values

These	are	the	Bellman	equations,	and	they	characterize	
optimal	values	in	a	way	we’ll	use	over	and	over

a

s

s,	a

s,a,s’,r
s’

(1920-1984)

Gridworld:	Q*

Gridworld Values	V*

Values	of	States

§ Fundamental	operation:	compute	the	(expectimax)	value	of	a	state
§ Expected	utility	under	optimal	action
§ Average	sum	of	(discounted)	rewards
§ This	is	just	what	expectimax computed!

§ Recursive	definition	of	value:

a

s

s, a

s,a,s’,r
s’

i.e.

Racing	Search	Tree

No	End	in	Sight…
§ Problem	1:	Tree	goes	on	forever

§ Rewards	@	each	step	à V	changes
§ Idea:	Do	a	depth-limited	computation,	but	

with	increasing	depths	until	change	is	small
§ Note:	deep	parts	of	the	tree	eventually

don’t	matter	much	(<	ε)		if	γ <	1

§ Problem	2:	Too	much	repeated	work
§ Idea:	Only	compute	needed	quantities	once
§ Like	graph	search	(vs. tree	search)
§ Ako dynamic	programming

Time-Limited	Values

§ Key	idea:	time-limited	values

§ Define	Vk(s)	to	be	the	optimal	value	of	s	if	the	game	ends	
in	k	more	time	steps
§ Equivalently,	it’s	what	a	depth-k	expectimax would	give	from	s

[Demo	– time-limited	values	(L8D6)]

Time-Limited	Values:	Avoiding	Redundant	Computation

Value	Iteration

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1

§ Repeat	until |Vk(s)	– Vk-1(s)	|	<	ε,							forall s	 “convergence”

Value	Iteration

a

Vk(s)

s,	a

s,a,s’,r
)s’(1-kV

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

Called a
“Bellman Backup”

Successive	approximation;	dynamic	programming

}	do	∀s,	a}

Example: Bellman Backup

V1= 0

V1= 1

V1= 2

Q1(s,a1) = 2 + g 0
~ 2

Q1(s,a2) = 5 + g 0.9~ 1
+ g 0.1~ 2

~ 6.1

Q1(s,a3) = 4.5 + g 2
~ 6.5

max

V2(s) = 6.5
5 a2

a1

a3

s

s1

s2

s3

Assume γ ~ 1

Example:	Value	Iteration
Assume	no	discount	(gamma=1)	to	

keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

Example:	Value	Iteration

0													0													0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

Example:	Value	Iteration

0													0													0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

0

Q(,		,slow)	=		

Q(,			,fast)	=																

Q1(s,a)=

0

Example:	Value	Iteration

0													0													0

1			

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

-10 0

Q(,		,slow)	=	½(1	+	0)	+	½(1+0)

Q(,			,fast)	=	-10	+	0

Q1(s,a)=

0

1,

Q(,		,slow)	=		

Example:	Value	Iteration

0													0													0

1														0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

2 1,-10 0

Q(,	fast)	=	½(2	+	0)	+	½(2	+	0)

Q1(s,a)=

Q(,	slow)	=	1*(1	+	0)

2

Q(,	fast)	=

Q(,	slow)	=

1,

Example:	Value	Iteration

0													0													0

2													1														0

3.5										2.5											0

Assume	no	discount	(gamma=1)	to	keep	math	simple!

Qk(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk-1(s’)]

Vk(s) = Max a Qk (s, a)

1,	2				 1,-10 0

3,3.5 2.5,-10 0

Q1(s,a)=

Q2(s,a)=

k=0

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=1

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

If agent is in 4,3, it only
has one legal action:
get jewel. It gets a
reward and the game
is over.
If agent is in the pit, it
has only one legal
action, die. It gets a
penalty and the game
is over.

Agent does NOT get a
reward for moving
INTO 4,3.

k=2

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=3

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=4

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=5

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=6

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=7

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=8

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=9

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=10

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=11

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=12

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=100

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

VI:	Policy	Extraction

Computing	Actions	from	Values

§ Let’s	imagine	we	have	the	optimal	values	V*(s)

§ How	should	we	act?
§ In	general,	it’s	not	obvious!

§ We	need	to	do	a	mini-expectimax (one	step)

§ This	is	called	policy	extraction,	since	it	gets	the	policy	implied	by	the	values

Computing	Actions	from	Q-Values

§ Let’s	imagine	we	have	the	optimal	q-values:

§ How	should	we	act?
§ Completely	trivial	to	decide!

§ Important	lesson:	actions	are	easier	to	select	from	q-values	than	values!

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1
Repeat	for	all	states,	s,	and	all	actions,	a:

§ Until	|Vk+1(s)	– Vk(s)	|	<	ε,							forall s	 “convergence”

§ Theorem:	will	converge	to	unique	optimal	values

Value	Iteration	- Recap

a

Vk+1(s)

s,	a

s,a,s’,r
)s’(kV

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)
}	do	∀s,	a}

Convergence*

§ How	do	we	know	the	Vk vectors	will	converge?

§ Case	1:	If	the	tree	has	maximum	depth	M,	then	
VM holds	the	actual	untruncated values

§ Case	2:	If	the	discount	is	less	than	1
§ Sketch:	For	any	state	Vk and	Vk+1 can	be	viewed	as	

depth	k+1	expectimax results	in	nearly	identical	
search	trees

§ The	max	difference	happens	if	big	reward	at	k+1	level
§ That	last	layer	is	at	best	all	RMAX

§ But	everything	is	discounted	by	γk that	far	out
§ So	Vk and	Vk+1 are	at	most	γk max|R|	different
§ So	as	k	increases,	the	values	converge

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1
Repeat	for	all	states,	s,	and	all	actions,	a:

§ Until	|Vk+1(s)	– Vk(s)	|	<	ε,							forall s	 “convergence”

§ Complexity	of	each	iteration?

Value	Iteration	- Recap

a

Vk+1(s)

s,	a

s,a,s’,r
)s’(kV

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)
}	do	∀s,	a}

§ Forall s,	Initialize	V0(s)	=	0					no	time	steps	left	means	an	expected	reward	of	zero

§ Repeat do	Bellman	backups
K += 1
Repeat	for	all	states,	s,	and	all	actions,	a:

§ Until	|Vk+1(s)	– Vk(s)	|	<	ε,							forall s	 “convergence”

§ Complexity	of	each	iteration:	O(S2A)
§ Number	of	iterations:	poly(|S|,	|A|,	1/(1-γ))	

Value	Iteration	- Recap

a

Vk+1(s)

s,	a

s,a,s’,r
)s’(kV

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)
}	do	∀s,	a}

Value	Iteration	as	Successive	Approximation	
§ Bellman	equations	characterize the	optimal	values:

§ Value	iteration	computes them:

§ Value	iteration	is	just	a	fixed-point	solution	method
Computed	using	dynamic	programming
…	though	the	Vk vectors	are	also	interpretable	as	time-limited	values

a

V(s)

s,	a

s,a,s’

V(s’)

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

Problems	with	Value	Iteration

§ Value	iteration	repeats	the	Bellman	updates:

§ Problem	1:	It’s	slow	– O(S2A)	per	iteration

§ Problem	2:	The	“max”	at	each	state	rarely	changes

§ Problem	3:	The	policy	often	converges	long	before	the	values

a

s

s,	a

s,a,s’
s’

Qk+1(s, a) = Σs’ T(s, a, s’) [R(s, a, s’) + γ Vk(s’)]

Vk+1(s) = Max a Qk+1 (s, a)

VI	à Asynchronous	VI

§ Is	it	essential	to	back	up	all states	in	each	iteration?
§ No!

§ States	may	be	backed	up	
§ many	times	or	not	at	all
§ in	any	order

§ As	long	as	no	state	gets	starved…
§ convergence	properties	still	hold!!

84

Prioritization	of	Bellman	Backups

§ Are	all	backups	equally	important?

§ Can	we	avoid	some	backups?

§ Can	we	schedule	the	backups	more	appropriately?

85

k=1

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=2

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

k=3

Noise	=	0.2
Discount	=	0.9
Living	reward	=	0

Asynch VI:	Prioritized	Sweeping

§ Why	backup	a	state	if	values	of	successors	unchanged?
§ Prefer	backing	a	state

§ whose	successors	had	most change
§ Priority	Queue	of	(state,	expected	change	in	value	~	residual)

Resv(s)	=	|	V(s)	– maxΣ T(s,a,s’)[R(s,a,s’)+V(s’)]	|
a ∊ A s’∊ S

§ Residual	at	s	with	respect	to	V
§ magnitude(ΔV(s))	after	one	Bellman	backup	at	s

Solving	MDPs

§ Value	Iteration

§ Policy	Iteration

§ Heuristic	Search	Methods

§ Real-Time	Dynamic	programming

§ Reinforcement	Learning

