CS 573: Artificial Intelligence

Markov Decision Processes

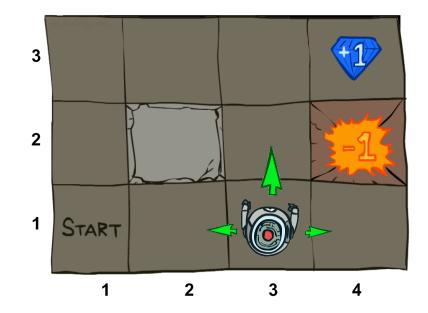
Dan Weld

University of Washington

Slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Mausam & Andrey Kolobov

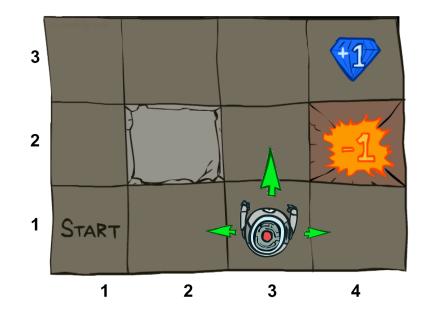
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: ~ maximize sum of rewards



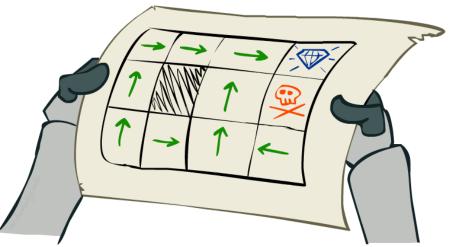
Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s'), e.g. in R&N
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



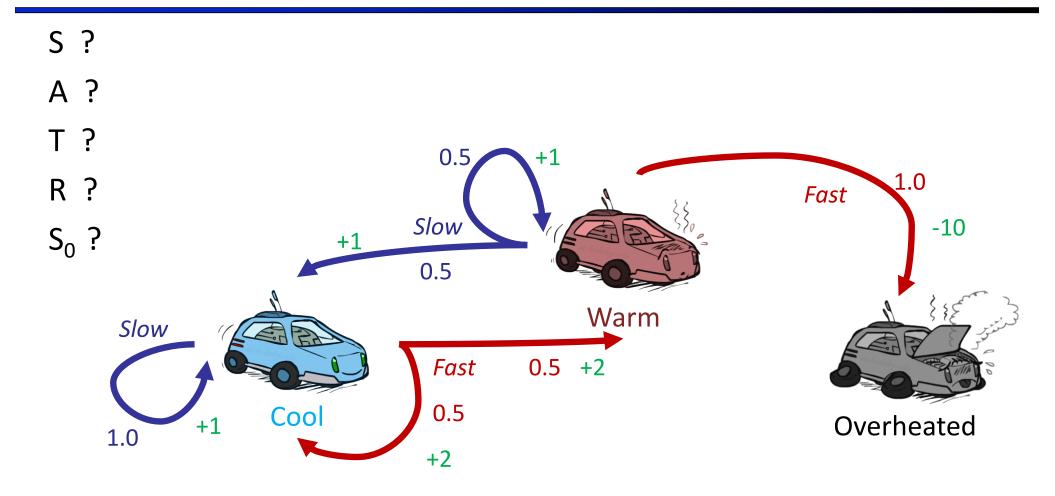
Input: MDP Output: Policy

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't output an entire policy
 - It computed the action for a single state only

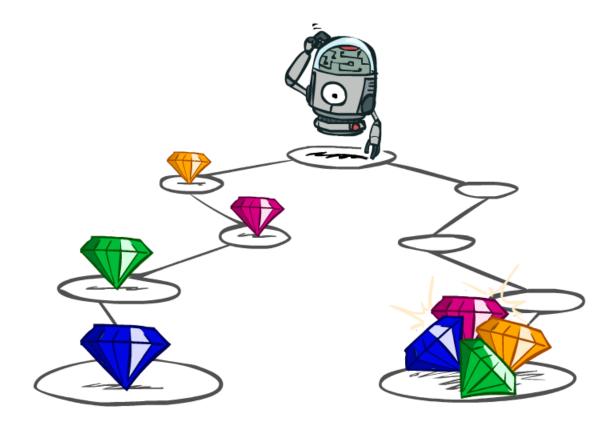


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Example: Racing



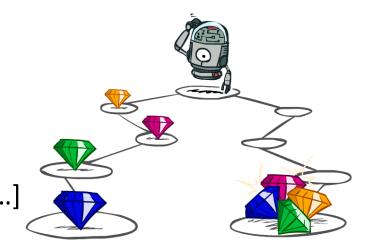
Utilities of Sequences



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]
- Harder... [1, 2, 3] or [3, 1, 1]

Infinite sequences? [1, 2, 1, ...] or [2, 1, 2, ...]



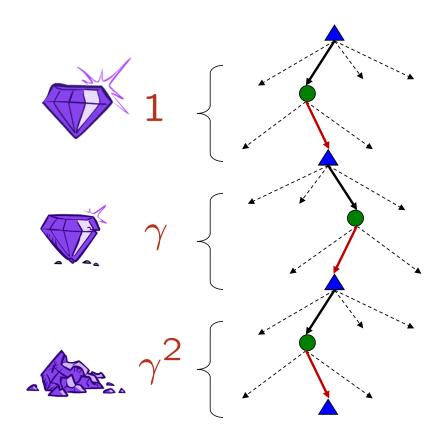
Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth In Two Steps

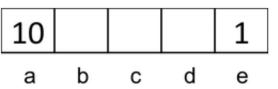
Discounting

- How to discount?
 - Each time we descend a level, we multiply by the discount
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 = 2.75
 - U([3,1,1]) = 1*3 + 0.5*1 + 0.25*1 = 3.75
 - U([1,2,3]) < U([3,1,1])</p>

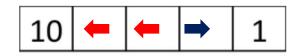


Quiz: Discounting

• Given:



- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For γ = 0.1, what is the optimal policy?



Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

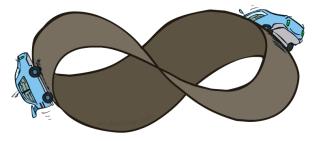
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - **1. Discounting:** use $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

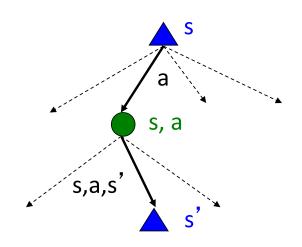
Smaller γ means smaller "horizon" – shorter term focus

- Finite horizon: (similar to depth-limited search) Add utilities, but terminate episodes after a fixed T-steps lifetime Gives non-stationary policies (π depends on time left)
- **3.** Absorbing state: guarantee that for every policy, a terminal state (like "overheated" for racing) will eventually be reached (eg. If *every* action had a chance of overheating)

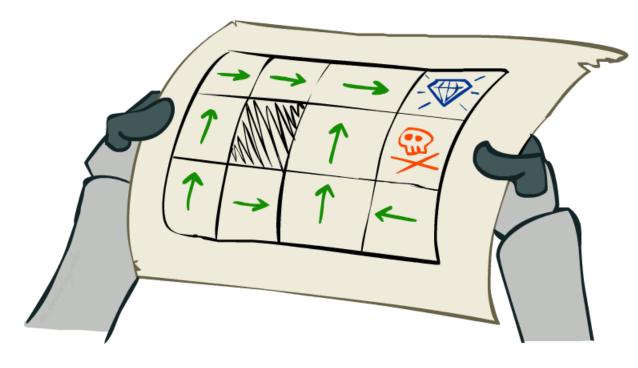


Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards



Solving MDPs



- Value Iteration
 - Asynchronous VI
 - RTDP

Etc...

- Policy Iteration
- Reinforcement Learning

π^* Specifies The Optimal Policy

$\pi^*(s)$ = optimal action from state s

V* = Optimal Value Function

The value (utility) of a state s:

V*(s)

"expected utility starting in s & acting optimally forever"

Equivalently: "value of s, following π^* forever"

Q*

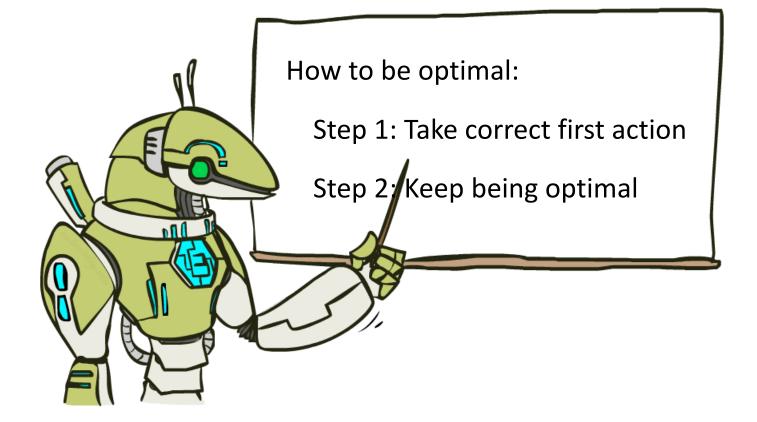
The value (utility) of the q-state (s,a):

Q^{*}(s,a)

"expected utility of 1) starting in state s2) first taking action a3) acting *optimally* (ala π^*) forever after that"

Q*(s,a) = reward from executing a in s then ending in s' plus... discounted value of V*(s')

The Bellman Equations



The Bellman Equations

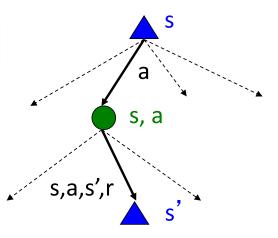
Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

(1920-1984)

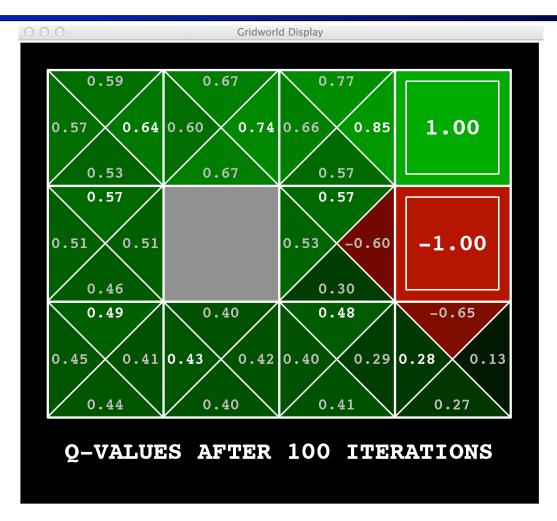
$$A^*(s) = \max_a Q^*(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over



Gridworld: Q*



Gridworld Values V*

$$V^*(s) = \max_a Q^*(s,a)$$

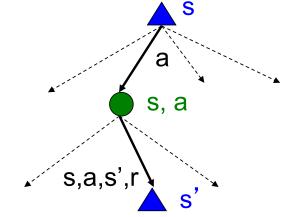
000	O Gridworld Display				
0.64 ▶	0.74 ▶	0.85 →	1.00		
0.57		0 .57	-1.00		
0.49	∢ 0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 ITERATIONS					

Values of States

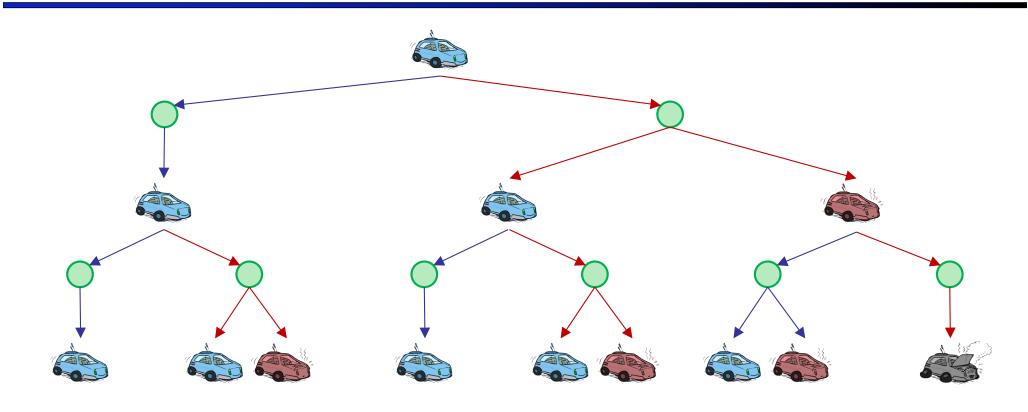
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
i.e.
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



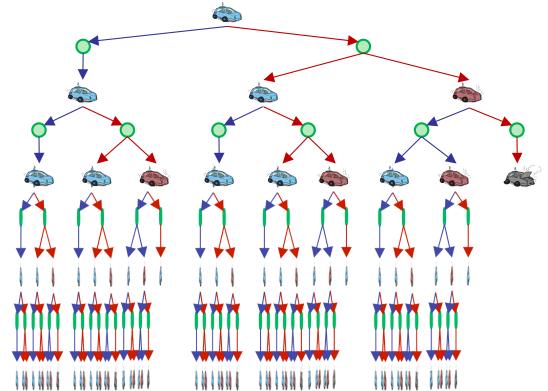
Racing Search Tree



No End in Sight...

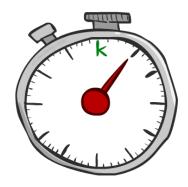
Problem 1: Tree goes on forever

- Rewards @ each step → V changes
- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree *eventually* don't matter much (< ε) if γ < 1
- Problem 2: Too much repeated work
 - Idea: Only compute needed quantities once
 - Like graph search (vs. tree search)
 - Ako dynamic programming



Time-Limited Values

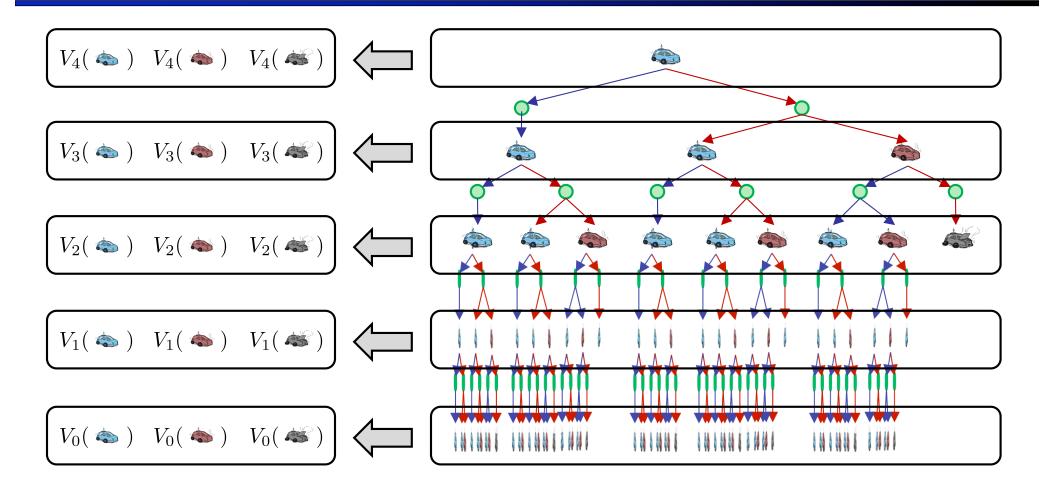
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s



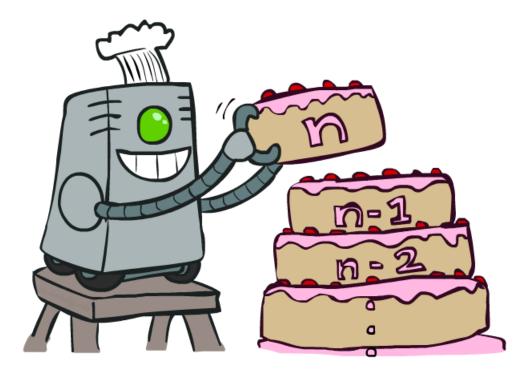


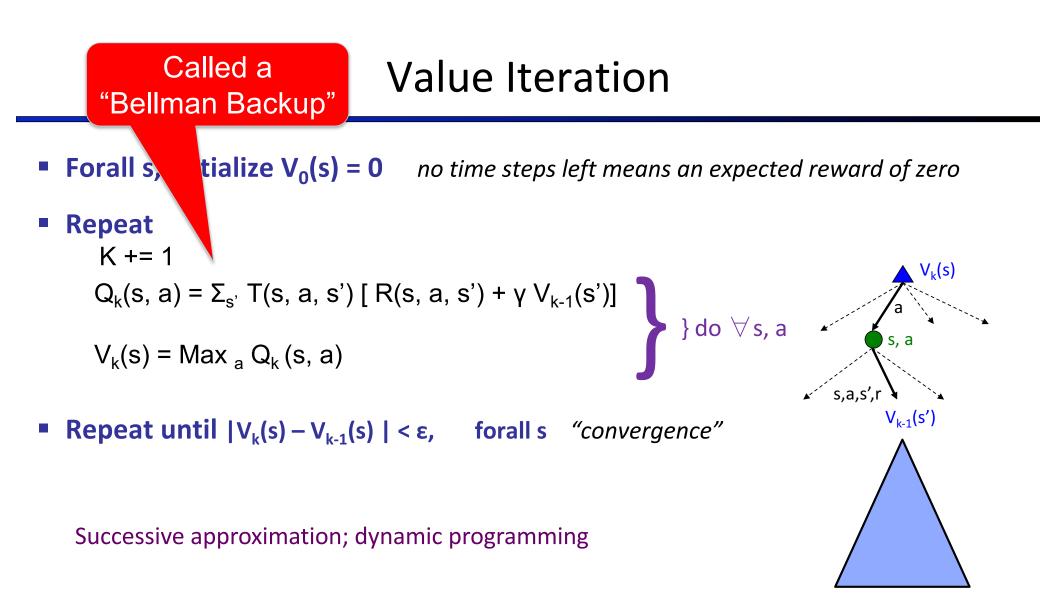
[Demo – time-limited values (L8D6)]

Time-Limited Values: Avoiding Redundant Computation

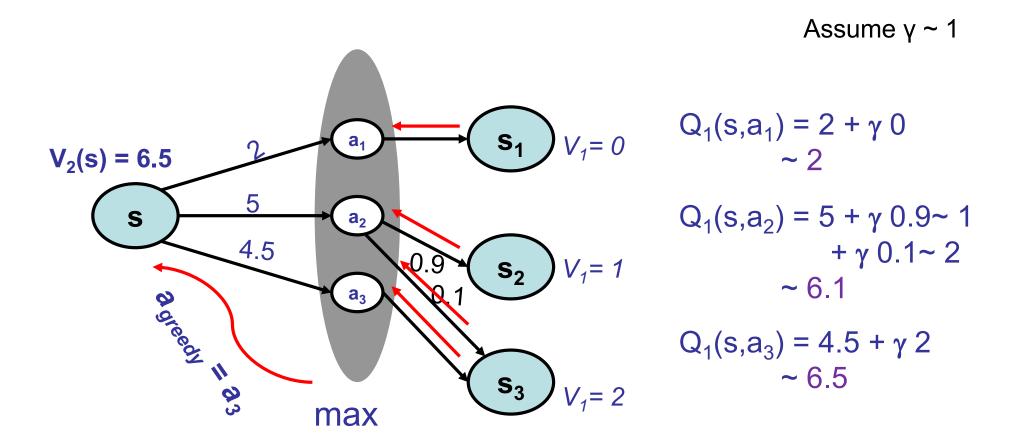


Value Iteration



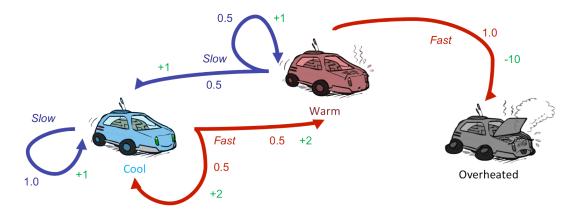


Example: Bellman Backup



Example: Value Iteration

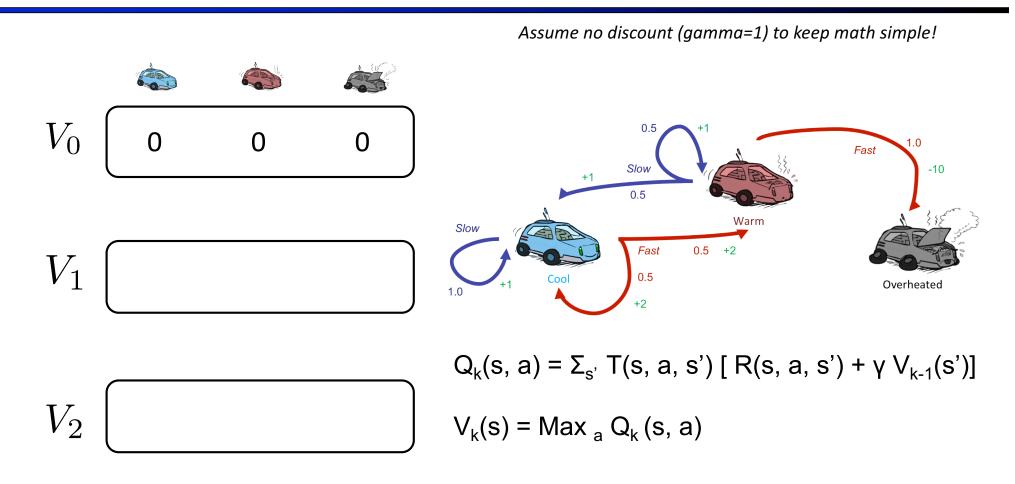
Assume no discount (gamma=1) to keep math simple!

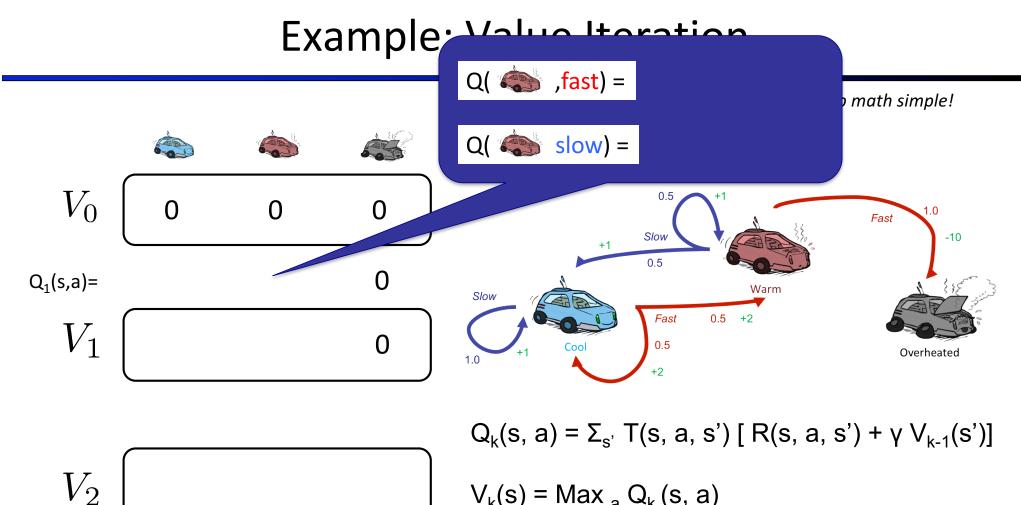


 $Q_k(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_{k-1}(s')]$

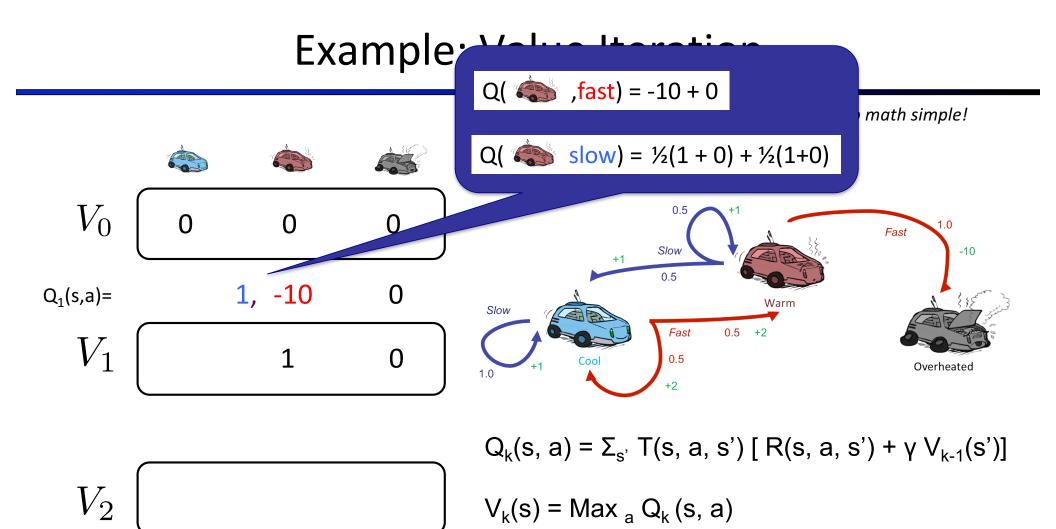
 $V_k(s) = Max_a Q_k(s, a)$

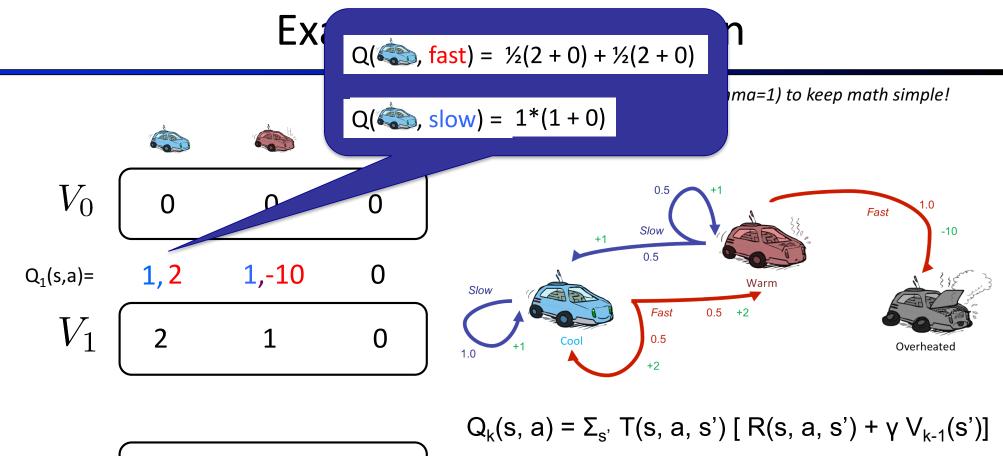
Example: Value Iteration





 $V_k(s) = Max_a Q_k(s, a)$

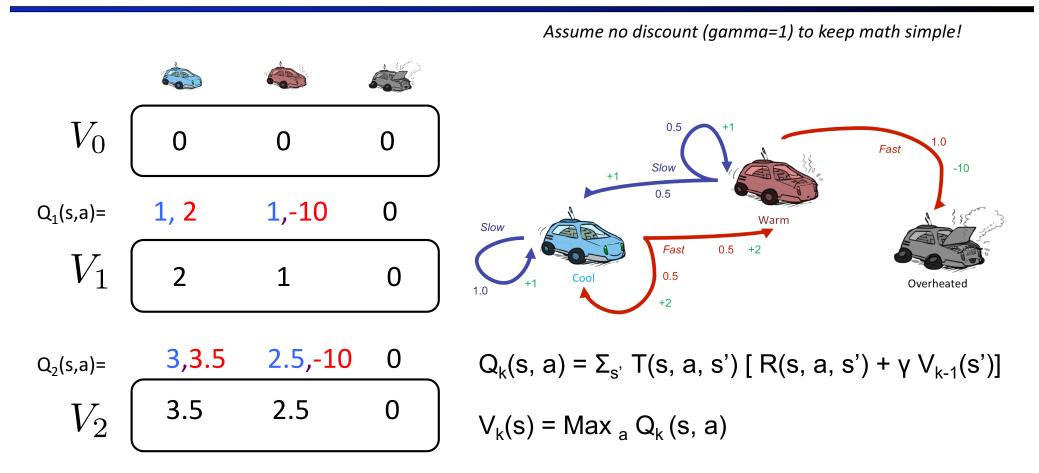




$$V_2$$

 $V_{k}(s, a) = Z_{s'} \Gamma(s, a, s) [R(s, a, s) + \gamma V_{k-1}(s, a, s)]$

Example: Value Iteration



k=0

Gridworld Display							
	^	•					
	0.00	0.00	0.00 ≯	0.00			
	^						
	0.00		∢ 0.00	0.00			
	^	^	•				
	0.00	0.00	0.00	0.00			
				-			
	VALUES AFTER 1 ITERATIONS						

Noise = 0.2 Discount = 0.9 Living reward = 0

If agent is in 4,3, it only has one legal action: get jewel. It gets a reward and the game is over.

If agent is in the pit, it has only one legal action, die. It gets a penalty and the game is over.

Agent does NOT get a reward for moving INTO 4,3.

-				
	0	Gridworl	d Display	
ľ				
	0.00	0.00	0.00 →	1.00
	^			
	0.00		∢ 0.00	-1.00
		_	^	
	0.00	0.00	0.00	0.00
				-
VALUES AFTER 1 ITERATIONS				

00	0	Gridworl	d Display		
	•	0.00 ≯	0.72 →	1.00	
	• 0.00		•	-1.00	
	0.00	• 0.00	•	0.00	
	VALUES AFTER 2 ITERATIONS				

00	0	Gridworl	d Display		
	0.00 ≯	0.52)	0.78)	1.00	
	• 0.00		• 0.43	-1.00	
	•	•	•	0.00	
	VALUES AFTER 3 ITERATIONS				

00	C Cridworld Display				
	0.37 ▶	0.66 →	0.83 →	1.00	
	•		• 0.51	-1.00	
	•	0.00 →	• 0.31	∢ 0.00	
	VALUES AFTER 4 ITERATIONS				

00	0	Gridworl	d Display		
	0.51 →	0.72 →	0.84 →	1.00	
	• 0.27		• 0.55	-1.00	
	•	0.22 ≯	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

000	Gridworl	d Display	_	
0.59)	0.73)	0.85)	1.00	
0.41		• 0.57	-1.00	
0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

000	Gridwork	d Display		
0.62 ≯	0.74 →	0.85)	1.00	
• 0.50		0. 57	-1.00	
• 0.34	0.36 →	0. 45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

000	Gridworl	d Display		
0.63)	0.74 →	0.85 →	1.00	
0.53		• 0.57	-1.00	
0.42	0.39 ≯	• 0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

000	Gridwork	d Display	-	
0.64 ▶	0.74 ≯	0.85)	1.00	
• 0.55		• 0.57	-1.00	
0.46	0.40 →	• 0.47	∢ 0.27	
VALUES AFTER 9 ITERATIONS				

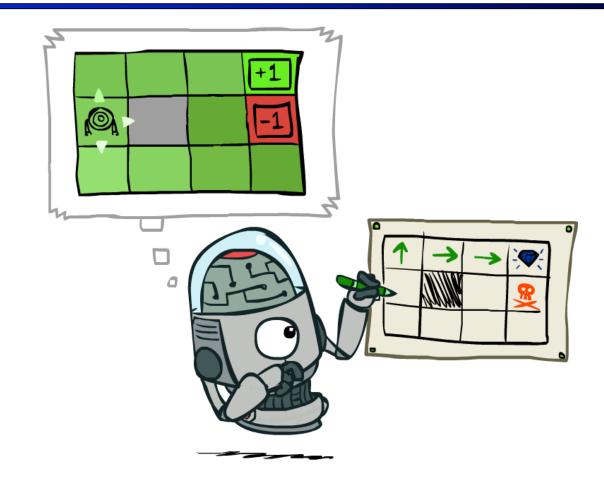
000	Gridworl	d Display		
0.64 →	0.74 ≯	0.85)	1.00	
• 0.56		• 0.57	-1.00	
0.48	∢ 0.41	• 0.47	∢ 0.27	
VALUES AFTER 10 ITERATIONS				

000	Gridworl	d Display	-		
0.64 →	0.74 →	0.85 →	1.00		
0.56		• 0.57	-1.00		
• 0.48	∢ 0.42	• 0.47	∢ 0.27		
VALUE	VALUES AFTER 11 ITERATIONS				

00	0	Gridworl	d Display		
	0.64 ≯	0.74 ≯	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	▲ 0.49	◀ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

Cridworld Display			
0.64 →	0.74 ≯	0.85 →	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES AFTER 100 ITERATIONS			

VI: Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - In general, it's not obvious!
- We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

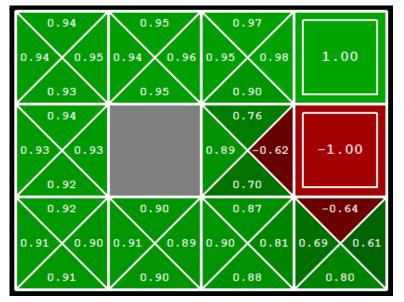
This is called policy extraction, since it gets the policy implied by the values

0.95 ≯	0.96 ≯	0.98)	1.00
0.94		∢ 0.89	-1.00
4 0.92	∢ 0.91	∢ 0.90	0.80

Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



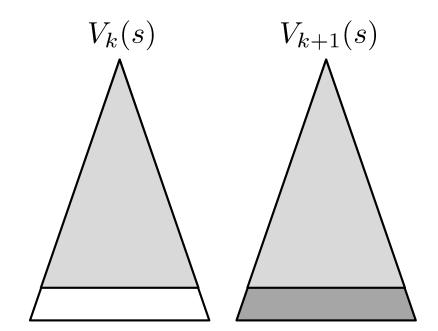
Important lesson: actions are easier to select from q-values than values!

Value Iteration - Recap

- Forall s, Initialize V₀(s) = 0 no time steps left means an expected reward of zero
- $\begin{array}{l} \textbf{Repeat} & do \ Bellman \ backups \\ K \ += 1 \\ \text{Repeat for all states, s, and all actions, a:} \\ Q_{k+1}(s, a) = \Sigma_{s'} \ T(s, a, s') \ [\ R(s, a, s') + \gamma \ V_k(s')] \\ V_{k+1}(s) = Max_a \ Q_{k+1}(s, a) \end{array} \right\} do \ \forall \ s, a \ s, a, s', r \ V_k(s') \\ \end{array}$
- Until $|V_{k+1}(s) V_k(s)| < \varepsilon$, forall s "convergence"
- Theorem: will converge to unique optimal values

Convergence*

- How do we know the V_k vectors will converge?
- Case 1: If the tree has maximum depth M, then
 V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The max difference happens if big reward at k+1 level
 - That last layer is at best all R_{MAX}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most γ^k max|R| different
 - So as k increases, the values converge



Value Iteration - Recap

- Forall s, Initialize V₀(s) = 0 no time steps left means an expected reward of zero
- Repeat do Bellman backups $K \neq = 1$ Repeat for all states, s, and all actions, a: $Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$ $V_{k+1}(s) = Max_a Q_{k+1}(s, a)$ $V_{k+1}(s) = Max_a Q_{k+1}(s, a)$
- Until |V_{k+1}(s) V_k(s) | < ε, forall s "convergence"</p>
- Complexity of each iteration?

Value Iteration - Recap

 $V_{k+1}(s)$

 $V_{k}(s')$

- Forall s, Initialize $V_0(s) = 0$ no time steps left means an expected reward of zero
- Repeat do Bellman backups K += 1 Repeat for all states, s, and all actions, a: $Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$ $do \forall s, a$ s, a, s', r $V_{k+1}(s) = Max_{a} Q_{k+1}(s, a)$
- **Until** $|V_{k+1}(s) V_k(s)| < \varepsilon$, forall s "convergence"
- Complexity of each iteration: O(S²A)
- Number of iterations: $poly(|S|, |A|, 1/(1-\gamma))$

Value Iteration as Successive Approximation

Bellman equations *characterize* the optimal values:

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} Q^{*}(s,a)$$

Value iteration *computes* them:

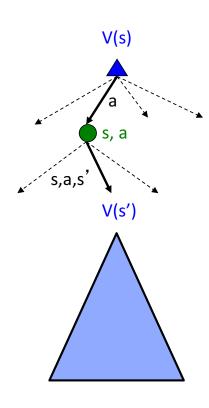
$$Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

 $V_{k+1}(s) = Max_{a} Q_{k+1}(s, a)$

Value iteration is just a *fixed-point solution method*

Computed using dynamic programming

... though the V_k vectors are also interpretable as time-limited values



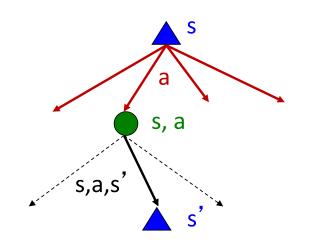
Problems with Value Iteration

Value iteration repeats the Bellman updates:

 $Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$

 $V_{k+1}(s) = Max_{a} Q_{k+1}(s, a)$

Problem 1: It's slow – O(S²A) per iteration



- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

$VI \rightarrow Asynchronous VI$

- Is it essential to back up *all* states in each iteration?
 - No!
- States may be backed up
 - many times or not at all
 - in any order
- As long as no state gets starved...
 - convergence properties still hold!!

Prioritization of Bellman Backups

- Are all backups equally important?
- Can we avoid some backups?
- Can we schedule the backups more appropriately?

00	Gridworld Display			
	^	^		
	0.00	0.00	0.00 ≯	1.00
	0.00		∢ 0.00	-1.00
	^	^	^	
	0.00	0.00	0.00	0.00
				•
	VALUES AFTER 1 ITERATIONS			

Gridworld Display				
	•	0.00 ≯	0.72 ▶	1.00
	• 0.00		•	-1.00
	•	• 0.00	•	0.00
	VALUES AFTER 2 ITERATIONS			

C Cridworld Display				
	0.00 ≯	0.52)	0.78)	1.00
	• 0.00		• 0.43	-1.00
	•	•	•	0.00
	VALUES AFTER 3 ITERATIONS			

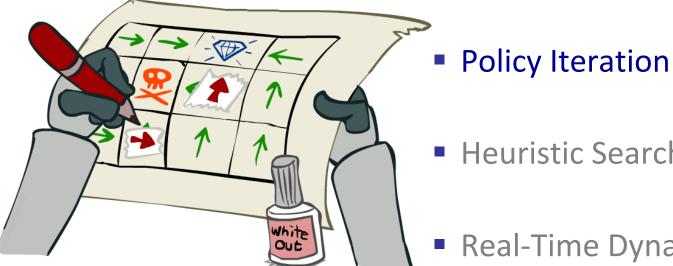
Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors unchanged?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value ~ residual)
- Residual at s with respect to V
 - magnitude(∆V(s)) after one Bellman backup at s

 $\operatorname{Res}_{v}(s) = |V(s) - \max_{a \in A} \sum_{s' \in S} T(s, a, s')[R(s, a, s') + V(s')]|$

Solving MDPs

Value Iteration



- Heuristic Search Methods
- Real-Time Dynamic programming
- Reinforcement Learning