CS 573: Artificial Intelligence

Markov Decision Processes

Dan Weld

University of Washington

Slides by Dan Klein & Pieter Abbeel / UC Berkeley. (http://ai.berkeley.edu) and by Mausam & Andrey Kolobov

Outline

= Adversarial Games

= Minimax search

* 0-3 search

= Evaluation functions

= Multi-player, non-0-sum
= Stochastic Games

» Expectimax

» Markov Decision Processes
» Reinforcement Learning

Agent vs. Environment

= Anagentis an entity
that perceives and acts.

Percepts

= Arational agent

selects actions that
maximize its utility
function.

Actions

Deterministic vs. stochastic
Fully observable vs. partially observable

Human Utilities

Utility Scales

WolLoG Normalized utilities: u, =1.0, u.=0.0

Micromorts: one-millionth chance of death, useful for
paying to reduce product risks, etc.

QALYs: quality-adjusted life years, useful for medical
decisions involving substantial risk

Note: behavior is invariant under positive linear
transformation

U'(z) = kiU(z) + ko where ky >0

Human Utilities

= Utilities map states to real numbers. Which numbers?

= Standard approach to assessment (elicitation) of human utilities:

* Compare a prize A to a standard lottery L, between
= “best possible prize” u, with probability p ﬁ

= “worst possible catastrophe” u_. with probability 1-p

" Adjust lottery probability p until indifference: A~ L,

= Resulting p is a utility in [0,1]

[Pay 530] P~

/

0.999999 .000001

No change Instant death

Money

= Money does not behave as a utility function, but we can talk
about the utility of having money (or being in debt)

= Given a lottery L = [p, SX; (1-p), SY]
* The expected monetary value EMV(L) is p*X + (1-p)*Y
U(L) = p*U($X) + (1-p)*U(SY)
Typically, U(L) < U(EMV(L))
In this sense, people are risk-averse 1 ° o oo —a-—2-F

= When deep in debt, people are risk-prone . %
-150,000 800,000

Example: Insurance

Consider the lottery [0.5, $1000; 0.5, SO]
» What is its expected monetary value? ($500)

= What is its certainty equivalent?

= Monetary value acceptable in lieu of lottery

= S400 for most people
= Difference of $100 is the insurance premium

= There’s an insurance industry because people will pay to reduce their risk
= |f everyone were risk-neutral, no insurance needed!

= |t’s win-win: you’d rather have the $S400 and the insurance company would
rather have the lottery (their utility curve is flat and they have many lotteries)

Rational Preferences

The Axioms of Rationality

[Orderability \

(A=B)Vv((B>=A)VA~B)
Transitivity

(A= B)YAN(B ~=C)= (A= C)
Continuity

A= B >=C=4dp [p,A;, 1 —p,C] ~B
Substitutability

A~B=[p,A; 1 —p,C] ~ [p,B;1— p,C]
Monotonicity

A= B =

(p=qg<=I[p,A; 1 —p,B] =[q,A;, 1 —gq,B])

- J

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

* Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

= Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

UA) >U(B) < A= B
U(lp1,S1; --- ; pn,Snl) = > p:U(S;)

-

= |.e.values assigned by U preserve preferences of both prizes and lotteries!

= Maximum expected utility (MEU) principle:
= Choose the action that maximizes expected utility

= Note: an agent can be entirely rational (consistent with MEU) without ever representing
or manipulating utilities and probabilities

= E.g., alookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |fthereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

= An MDP is defined by:
= Asetofstatess e S
= Asetofactionsa e A

= A transition function T(s, a, s’)
= Probability that a from s leadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

/T(sll, E, ... \

T is a Big Table!
11 X4 x 11 =484 entries

For now, we give this as input to the agent

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess e S
= Asetofactionsa e A

= A transition function T(s, a, s’)

= Probability that a from s leadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)

-~

R(S32, .I.\.l, 542) = '1.01
R(Ss3, E, S43) = 0.99

~

R(Say N, S33) = -0.01 «—

— Cost of breathing

R is also a Big Table!

)

For now, we also give this to the agent

Markov Decision Processes

= An MDP is defined by:
= Asetofstatess e S
= Asetofactionsa e A

= A transition function T(s, a, s’)
= Probability that a from s leadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

4)
R(ss3) = -0.01
R(s,,) =-1.01
R(s43) = 0.99

= J

Markov Decision Processes

An MDP is defined by:

= Asetofstatesse S

= AsetofactionsaeA

= A transition function T(s, a, s’)
= Probability that a from s leadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’), e.g. in R&N

A start state

Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We’ll have a new tool soon

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si41 = 5'|St = s¢, Ay = ag, St—1 = S¢—1, Ar—1,...50 = So)

Andrey Markov
P(Siy1 = 5|5t = s, A = ay) (1856-1922)

= This is just like search, where the successor function can only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy 7*:S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Expectimax didn’t output an entire policy

" |t computed the action for a single state only

Optimal Policies

o« \-) R(s) = -0.4 R(s) =-2.0

Example: Racing

Example: Racing

= A robot car wants to travel far, quickly
= Three states: Cool, Warm, Overheated
= Two actions: Slow, Fast

= Going faster gets double reward

= Except when warm
Slow

Overheated

Racing: Search Tree

Might be generated with ExpectiMax, but ...?

todo

= Add rewards into previous slide
= Next slide seems weirdly placed — totally unnecessary here

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

A\ s ..astate
I~
P AN
e N OOse
// N ~So
P N e
N <
\ S~o
\ ~.

/ % (s,a,s,’r) called a transition

T(s,a,s) =P(s’ |s,a)
N/

A s r=R(s,a,s’)

Utilities of Sequences

Utilities of Sequences

= What preferences should an agent have over reward sequences?

"= More or less? [1,2,2] or [2,3, 4]

= Now or later? [0, 0, 1] or [1,0,0] @

= Harder... [1,2,3] or [3,1,1] @/6’2
= |nfinite sequences? [1,2,1,..] or [2,1,2,..] X P";,;

- o>

Discounting

" |t's reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

&{ L.
©v @

- Y v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we X/{ "
multiply by the discount \ 1

= Why discount?

= Sooner rewards probably do have higher ./ «
utility than later rewards 3 fy
= Also helps our algorithms converge A
= Example: discount of 0.5 o

= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 = 2.75
= U([3,1,1]) = 1*3 + 0.5*1 + 0.25*1 = 3.75
= U([1,2,3]) < U([3,1,1])

Stationary Preferences

9
2 @

a1, a9,...] = [b1,ba,..] @ Q
g v

[T7a17a27 ..] ~— [T, bl,bg, ..]

= Theorem: if we assume stationary preferences:

= Then: there are only two ways to define utilities
= Additive utility: U([rg,r1,72,...])) =r0+71+ 10+ -

= Discounted utility: U([rg,71,70,...]) =70 +r1 +~%ro---

