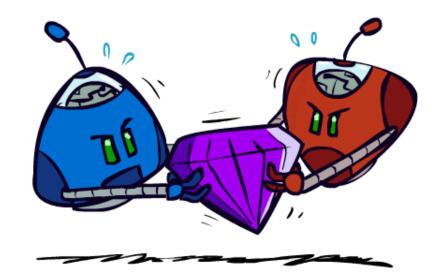
CSE 573: Artificial Intelligence

Adversarial Search Dan Weld



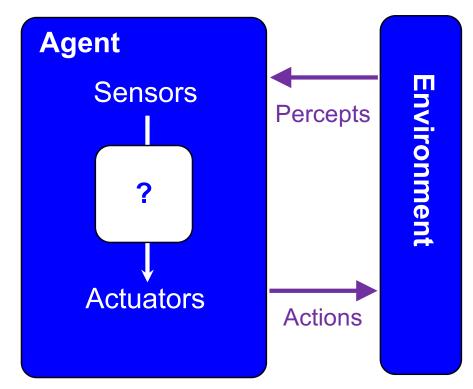
Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer

(best illustrations from ai.berkeley.edu)

Types of Environments

- Fully observable vs. partially observable
- Single agent vs. multi-agent
- Deterministic vs. stochastic
- Episodic vs. sequential
- Discrete vs. continuous



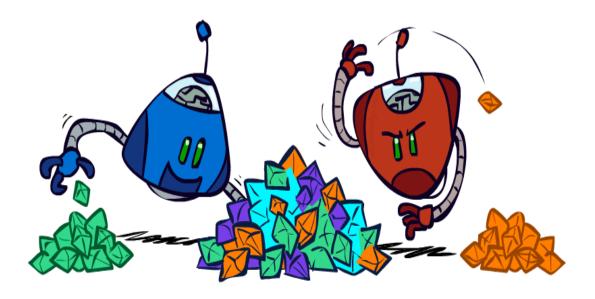
Types of Games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon, monopoly
imperfect information	stratego	bridge, poker, scrabble, nuclear war

Number of Players? 1, 2, ...?

Zero-Sum Games



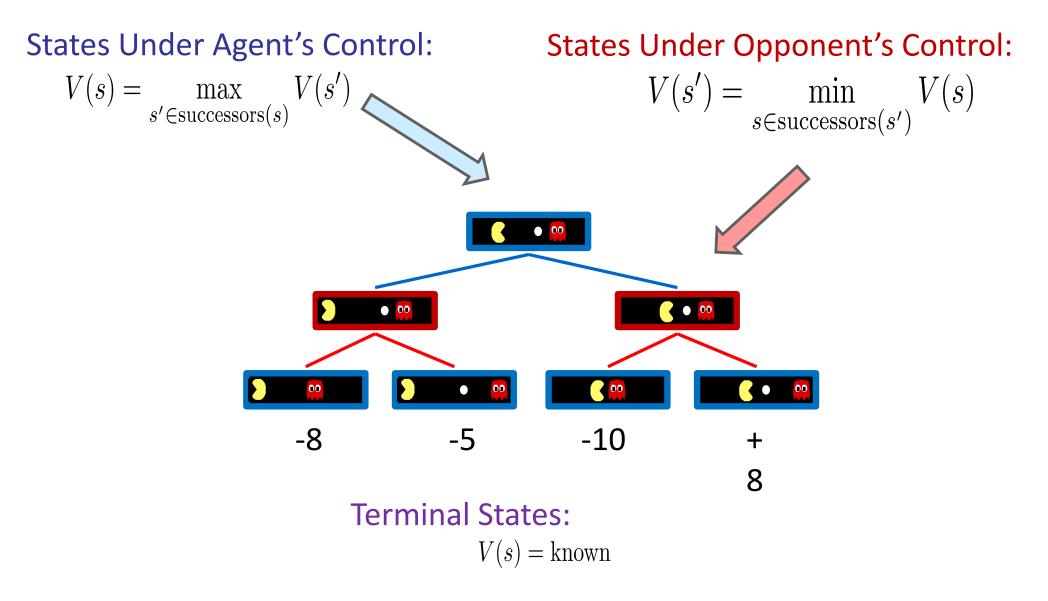


Zero-Sum Games

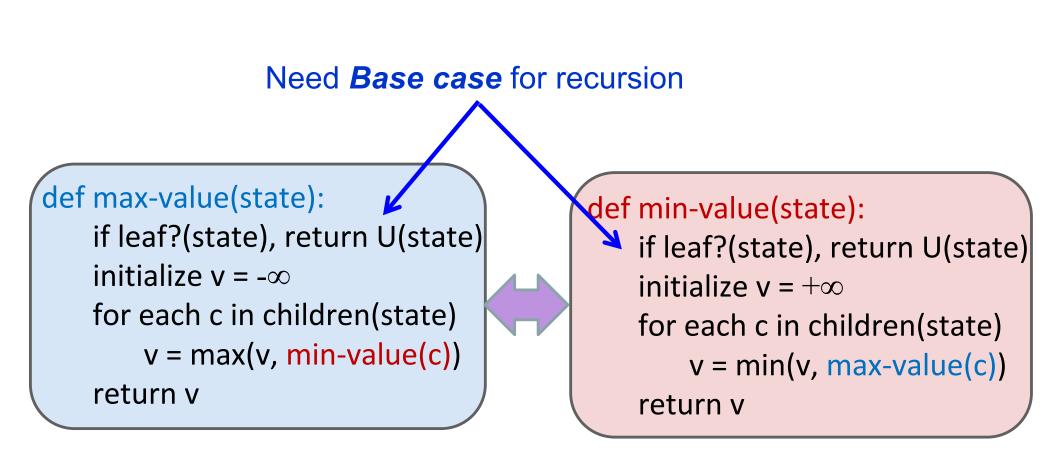
- Agents have opposite utilities (values on outcomes)
- Lets us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, & more are possible
 - More later on non-zero-sum games

Minimax Values



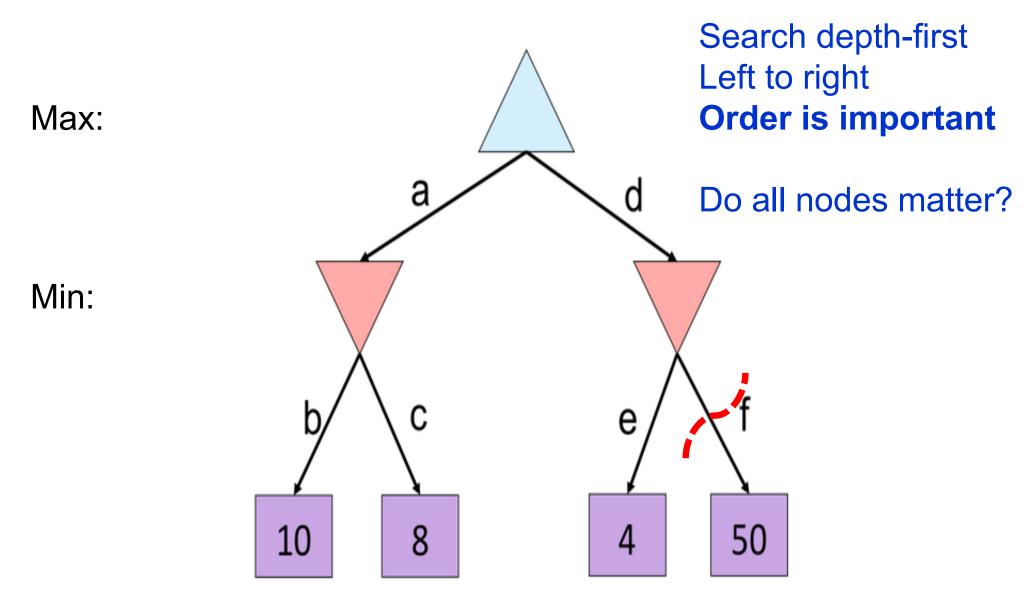
Minimax Implementation



$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

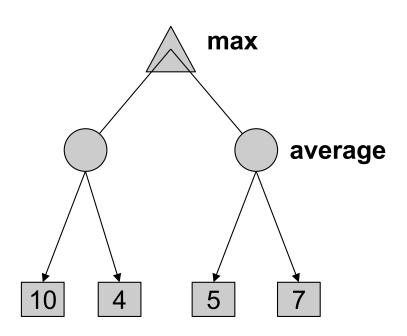
Alpha-Beta Quiz



Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Stochastic Single-Player

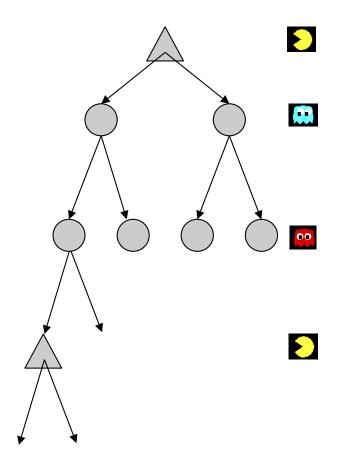
- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, mine locations
- Can do expectimax search
 - Chance nodes, like actions except the environment controls the action chosen
 - Max nodes as before
 - Chance nodes take average (expectation) of value of children



ExpectiMax Search

In ExpectiMax search, we have a probabilistic model of how the opponent (or environment) will behave in any state

- Model could be a simple uniform distribution (roll a die)... or more complex
- We have a node for every outcome out of our control: opponent or environment



For now, assume \forall states we magically have a distribution to assign probabilities to enemy-actions / environment outcomes

Expectimax Pseudocode

def value(s)

if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)

```
def maxValue(s)
```

values = [value(s') for s' in successors(s)]
return max(values)


```
def expValue(s)
  values = [value(s') for s' in successors(s)]
```

weights = [probability(s, s') for s' in successors(s)]
return expectation(values, weights)

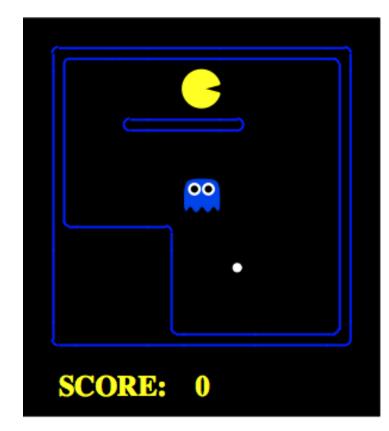
ExpectiMax for Pacman

- Note: that we've gotten away from thinking that the ghosts are trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman's computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?

Expectimax for Pacman

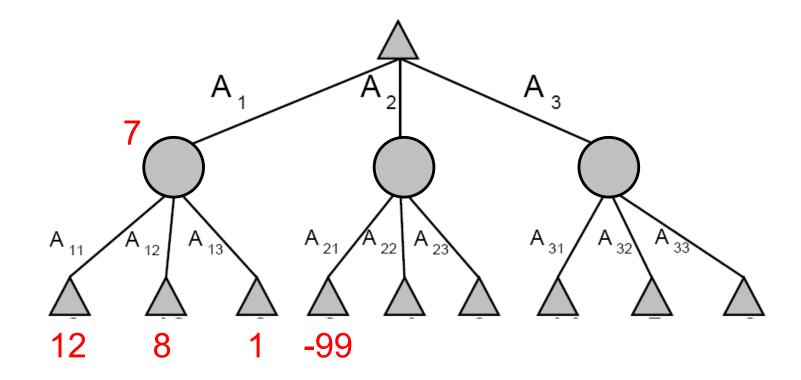
Results from playing 5 games

	Minimizing Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 493	Won 5/5 Avg. Score: 483
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503



Pacman does depth 4 search with an eval function that avoids trouble Minimizing ghost does depth 2 search with an eval function that seeks Pacman

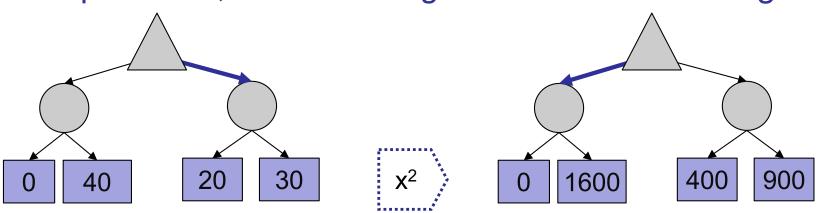
ExpectiMax Pruning?



- Not easy
 - exact: need bounds on possible values
 - approximate: sample high-probability branches

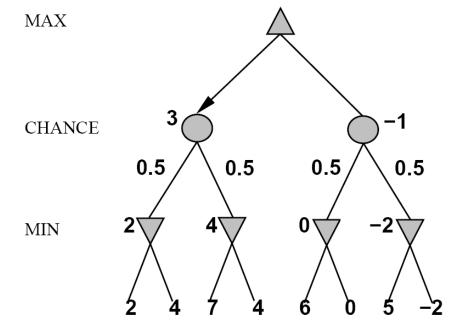
ExpectiMax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful



Mixed Layer Types

- E.g. Backgammon
- Expecti-Mini-Max
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax



 ${f if}\ state\ {f is}\ {f a}\ {f MAX}\ {f node\ then}$

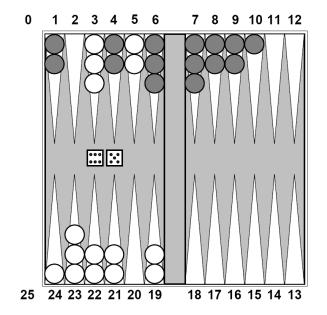
return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*)

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 4 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...

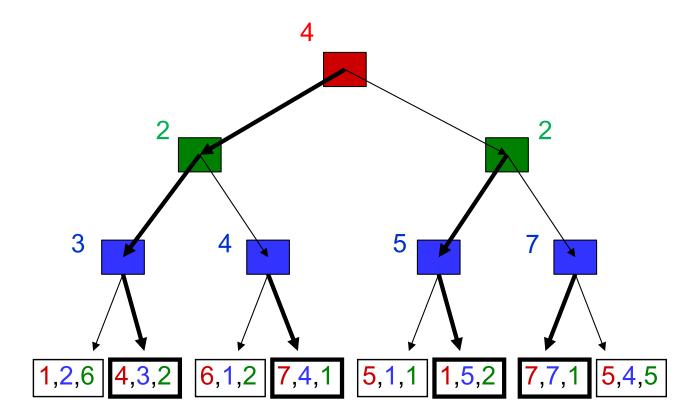


- TDGammon used depth-2 search + very good eval function
 - Learned via NN & reinforcement learning
 - World-champion level play (1992, Gerald Tesauro)

Multi-player Non-Zero-Sum Games

Similar to minimax:

- Utilities are now tuples
- Each player maximizes their own entry at each node
- Propagate (or back up) nodes from children
- Can give rise to cooperation and competition dynamically...



In this example... three agents