CSE 573: Artificial Intelligence

Adversarial Search
Dan Weld

Based on slides from

Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer

(best illustrations from ai.berkeley.edu)

Types of Environments

Fully observable vs. partially observable
Single agent vs. multi-agent
Deterministic vs. stochastic
Episodic vs. sequential
Discrete vs. continuous gy

—

Percepts

Sensors

M
S
S.
q
o
S
=
@
S
—

Types of Games

deterministic chance
perfect chess, checkers, | backgammon,
information go, othello monopoly

bridge, poker,
stratego scrabble, nuclear
war

imperfect
information

Number of Players? 1, 2, ...7

Zero-Sum Games

= Zero-Sum Games = General Games
= Agents have opposite utilities = Agents have independent utilities
(values on outcomes) (values on outcomes)
» |ets us think of a single value = Cooperation, indifference,
that one maximizes and the competition, & more are possible
other minimizes = More later on non-zero-sum

» Adversarial, pure competition games

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
Vis)= max V(s

/]
V(is)= min V(s
s' €successors(s) \ s€successors(s’)

Terminal States:
V(s) = known

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Minimax Implementation

Need Base case for recursion

Gef max-value(state):
if leaf?(state), return U(state)
initialize v = -0
for each cin children(state)
v = max(v, min-value(c))

\ return v /

V(is)= max V(s

s’ €successors(s)

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

ef min-value(state): \
if leaf?(state), return U(state)
initialize v = +oo
for each cin children(state)
v = min(v, max-value(c))

\ returnv /

V()= min V(s

s€successors(s’)

Alpha-Beta Quiz

Search depth-first

Left to right
Max: Order is important

Do all nodes matter?

Min:

10 8 4 50

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu

Stochastic Single-Player

= What if we don’t know what the
result of an action will be? E.g.,
» |n solitaire, shuffle is unknown max
* |In minesweeper, mine
locations

= Can do expectimax search
» Chance nodes, like actions
except the environment controls
the action chosen 101 [4 5 7
* Max nodes as before
» Chance nodes take average
(expectation) of value of children

average

ExpectiMax Search

In ExpectiMax search, we have a)
probabilistic model of how the
opponent (or environment) will]

behave in any state

= Model could be a simple uniform
distribution (roll a die)...
or more complex O L]

= We have a node for every
outcome out of our control:
opponent or environment B}

For now, assume V states we magically have a distribution to
assign probabilities to enemy-actions / environment outcomes

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s)

if s is an exp node return expValue(s) 2
If s is a terminal node return evaluation(s)
def maxValue(s)
values = [value(s’) for s’ in successors(s)]
return max(values) 6| 4] [o] L6

def expValue(s)
values = [value(s’) for s’ in successors(s)]
weights = [probability(s, s’) for s’ in successors(s)]
return expectation(values, weights)

ExpectiMax for Pacman

Note: that we've gotten away from thinking that the ghosts
are trying to minimize pacman'’s score

Instead, they are now a part of the environment
Pacman has a belief (distribution) over how they will act

Quiz: Can we see minimax as a special case of
expectimax?

Quiz: what would pacman’s computation look like if we
assumed that the ghosts were doing 1-ply minimax and
taking the result 80% of the time, otherwise moving
randomly?

Expectimax for Pacman

Results from playing 5 games

Random
Ghost

Won 5/5 Won 5/5

Minimax
2 Avg. Score: Avg. Score:
Pacman
493 483
_ Won 1/5 Won 5/5
Expectimax Avg. Score: Avg. Score:
Pacman

-303 503

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

ExpectiMax Pruning?

= Not easy
= exact: need bounds on possible values
» approximate: sample high-probability branches

ExpectiMax Evaluation

Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or
minimax?)

For minimax, evaluation function scale doesn’t matter

= We just want better states to have higher evaluations
(get the ordering right)

= We call this insensitivity to monotonic transformations
For expectimax, we need magnitudes to be meaningful

0 || 40 20|30 ix : [o]l[1600] |400]| 900

U

Mixed Layer Types

= E.g. Backgammon

MAX
= Expecti-Mini-Max
= Environment Is an extra o
CHANCE
player that moves after
each agent
MIN

= Chance nodes take
expectations, otherwise
like minimax

if state is a M AX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state)
if state is a chance node then

return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

*= Dice rolls increase b: 21 possible rolls with 2 dice
= Backgammon = 20 legal moves

= Depth 4 =20 x (21 x 20)3 = 1.2 x 109

= As depth increases, probability of
reaching a given node shrinks
= So value of lookahead is diminished
= So limiting depth is less damaging
= But pruning is less possible... 25 242322212019 1817 16 15 14 13

= TDGammon used depth-2 search + very good eval function
= Learned via NN & reinforcement learning
= World-champion level play (1992, Gerald Tesauro)

Multi-player Non-Zero-Sum Games

Similar to minimax:

= Utilities are now
tuples

= Each player
maximizes their
own entry at
each node

* Propagate (or
back up) nodes
from children

= Can give rise to
cooperation and
competition
dynamically...

1,2,6

[43.2]

6,1,2||7,4,1] (51,1|[1.5,2] |7.7.1]

54,5

In this example... three agents

