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Outline
§ Adversarial Search

§ Minimax search
§ α-β search
§ Evaluation functions
§ Expectimax

§ Reminder:
§ Project 2 due in 7 days 



Types of Environments
§ Fully observable vs. partially observable
§ Single agent vs. multi-agent
§ Deterministic vs. stochastic
§ Episodic vs. sequential
§ Discrete vs. continuous Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions



Game Playing State-of-the-Art
1994: Checkers. Chinook ended 40-year-reign of human world champion 
Marion Tinsley. Used search plus an endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved!



Game Playing State-of-the-Art
1997: Chess. Deep Blue defeated human world champion Gary Kasparov 
in a six-game match. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current programs are even 
better, if less historic.



Game Playing State-of-the-Art
Go: b > 300!     Programs use monte carlo tree search + pattern KBs

2015: AlphaGo beats European Go champion Fan Hui (2 dan) 5-0
2016: AlphaGo beats Lee Sedol (9 dan) 4-1



Game Playing State-of-the-Art
Othello: Human champions refuse to compete against computers.



Game Playing State-of-the-Art
§ Pacman: … unknown …



Types of Games

stratego

Number of Players?  1, 2, …?



Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A à S
§ Terminal Test: S à {t,f}
§ Terminal Utilities: S x Pà R

§ Solution for a player is a policy: S à A



Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities 

(values on outcomes)
§ Lets us think of a single value 

that one maximizes and the 
other minimizes

§ Adversarial, pure competition

§ General Games
§ Agents have independent utilities 

(values on outcomes)
§ Cooperation, indifference, 

competition, & more are possible
§ More later on non-zero-sum 

games



Deterministic Single-Player
§ Deterministic, single player, 

perfect information:
§ Know the rules, action effects, 

winning states
§ E.g. Freecell, 8-Puzzle, Rubik’s 

cube
§ … it’s just search!

win loselose

§ Slight reinterpretation:
§ Each node stores a value: the 

best outcome it can reach
§ This is the maximal outcome of 

its children (the max value)
§ Note that we don’t have path 

sums as before (utilities at end)
§ After search, can pick move that 

leads to best node



Deterministic Two-Player
§ E.g. tic-tac-toe, chess, checkers
§ Zero-sum games

§ One player maximizes result
§ The other minimizes result



Deterministic Two-Player
§ E.g. tic-tac-toe, chess, checkers
§ Zero-sum games

§ One player maximizes result
§ The other minimizes result

8 2 5 6

max

min

§ Minimax search
§ A state-space search tree
§ Players alternate
§ Choose move to position                                       

with highest minimax value                                        
= best achievable utility against best play



Tic-tac-toe Game Tree

You choose

You choose

You choose

Opponent

Opponent



Previously: Single-Agent Trees

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Previously: Value of a State
Non-Terminal	States:

8

2 0 2 6 4 6… … Terminal	States:

Value	of	a	state:	
The	best	
achievable	

outcome	(utility)	
from	that	state

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Minimax Values

+
8

-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Minimax Implementation

def	min-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state)

v	=	min(v,	max-value(c))
return	v

def	max-value(state):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state)

v	=	max(v,	min-value(c))
return	v

Need Base case for recursion

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Concrete Minimax Example

min

max



Minimax Example

min

max
A1



Quiz

Min:

Max:

9            1           8        5         4        3         2 7          8



Answer

Min:

Max:

9            1           8        5         4        3         2 7          8

1 3 2

3



Minimax Properties

§ Time complexity?

§ Space complexity?

10 10 9 100

max

min
§ O(bm)

§ O(bm)

§ For chess, b ~ 35, m ~ 100
§ Exact solution is completely infeasible
§ But,… do we need to explore the whole tree?

§ Optimal? 
§ Yes, against perfect player. Otherwise?



Do We Need to Evaluate Every Node?

Min:

Max:



Do We Need to Evaluate Every Node?

3

³3

Progress of search…

Min:

Max:



a-b Pruning Example

3 £2

³3

Progress of search…

Min:

Max:

Doesn’t matter!
Don’t need to evaluate

?     ?



Alpha-Beta Quiz
Search depth-first
Left to right
Order is important

Do all nodes matter?

Min:

Max:

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Alpha-Beta Quiz 2
Search depth-first
Left to right
Order is important
Do all nodes matter?

Min:

Max:

Max:

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



a-b Pruning

§ a is MAX’s best choice on 
path to root

§ If n becomes worse than a, 
MAX will avoid it, so can 
stop considering n’s other 
children

§ Define b similarly for MIN

Player

Opponent

Player

Opponent

α

n



Min-Max Implementation

def	min-val(state ):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c								))

return	v

def max-val(state									):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c								))

return	v

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Alpha-Beta Implementation

def	min-val(state	,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))

return	v

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Implementation

def	min-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	+∞
for	each	c	in	children(state):

v	=	min(v,	max-val(c,	α,	β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-val(state,	α,	β):
if	leaf?(state),	return	U(state)
initialize	v	=	-∞
for	each	c	in	children(state):

v	=	max(v,	min-val(c,	α,	β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide adapted from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



Alpha-Beta Pruning Demo
http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/

41



Alpha-Beta Pruning Properties
§ This pruning has no effect on final result at the root

§ Values of intermediate nodes might be wrong!
§ but, they are correct bounds

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ (But complete search of complex games, e.g. chess, is still hopeless…



Resource Limits
§ Problem: In realistic games, cannot 

search to leaves!
§ Solution: Depth-limited search

§ Instead, search only to a limited depth 
in the tree

§ Replace terminal utilities with an 
evaluation function for non-terminal 
positions

§ Example:
§ Suppose we have 3 min/move, can 

explore 1M nodes / sec
§ So can check 200M nodes per move
§ a-b reaches about depth 10 à decent 

chess program

§ Guarantee of optimal play is gone
§ More plies makes a BIG difference

? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Depth Matters
§ Evaluation functions are 

always imperfect
§ The deeper in the tree the 

evaluation function is 
buried, the less the quality 
of the evaluation function 
matters

§ Good example of the 
tradeoff between 
complexity of features and 
complexity of computation



Iterative Deepening
Iterative deepening uses DFS as a 

subroutine:

1. Do a DFS which only searches for 
paths of length 1 or less.  (DFS gives 
up on any path of length 2)

2. If “1” fails, do a DFS which only 
searches paths of length 2 or less.

3. If “2” fails, do a DFS which only 
searches paths of length 3 or less.

….and so on.

Can one adapt to games to make 
anytime algorithm ?

…
b



Heuristic Evaluation Function
§ Function which scores non-terminals

§ Ideal function: returns the true utility of the position
§ In practice: need a simple, fast approximation

§ typically weighted linear sum of features:
§ e.g. f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman

What features would be good for Pacman?



Which algorithm?

α-β, depth 4, simple eval fun



Which algorithm?
α-β, depth 4, better eval fun



Why Pacman Starves
§ He knows his score will go 

up by eating the dot now
§ He knows his score will go 

up just as much by eating 
the dot later on

§ There are no point-scoring 
opportunities after eating 
the dot

§ Therefore, waiting seems 
just as good as eating



Stochastic Single-Player
§ What if we don’t know what the 

result of an action will be? E.g.,
§ In solitaire, shuffle is unknown
§ In minesweeper, mine 

locations

10 4 5 7

max

average
§ Can do expectimax search

§ Chance nodes, like actions 
except the environment controls 
the action chosen

§ Max nodes as before
§ Chance nodes take average 

(expectation) of value of children



Which Algorithms?

Expectimax Minimax

3 ply look ahead, ghosts move randomly



Maximum Expected Utility
§ Why should we average utilities?  Why not minimax?

§ Principle of maximum expected utility: an agent should 
chose the action which maximizes its expected utility, 
given its knowledge
§ General principle for decision making
§ Often taken as the definition of rationality
§ We’ll see this idea over and over in this course!

§ Let’s decompress this definition…



Reminder: Probabilities
§ A random variable represents an event whose outcome is unknown
§ A probability distribution is an assignment of weights to outcomes

§ Example: traffic on freeway?
§ Random variable: T = whether there’s traffic
§ Outcomes: T in {none, light, heavy}
§ Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

§ Some laws of probability (more later):
§ Probabilities are always non-negative
§ Probabilities over all possible outcomes sum to one

§ As we get more evidence, probabilities may change:
§ P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
§ We’ll talk about methods for reasoning and updating probabilities later



What are Probabilities?

§ Averages over repeated experiments
§ E.g. empirically estimating P(rain) from historical observation
§ E.g. pacman’s estimate of what the ghost will do, given what it 

has done in the past
§ Assertion about how future experiments will go (in the limit)
§ Makes one think of inherently random events, like rolling dice

§ Objectivist / frequentist answer:

§ Degrees of belief about unobserved variables
§ E.g. an agent’s belief that it’s raining, given the temperature
§ E.g. pacman’s belief that the ghost will turn left, given the state
§ Often learn probabilities from past experiences (more later)
§ New evidence updates beliefs (more later)

§ Subjectivist / Bayesian answer:



Uncertainty Everywhere
§ Not just for games of chance!

§ I’m sick: will I sneeze this minute?
§ Email contains “FREE!”: is it spam?
§ Tooth hurts: have cavity?
§ 60 min enough to get to the airport?
§ Robot rotated wheel three times, how far did it advance?
§ Safe to cross street? (Look both ways!)

§ Sources of uncertainty in random variables:
§ Inherently random process (dice, etc)
§ Insufficient or weak evidence
§ Ignorance of underlying processes
§ Unmodeled variables
§ The world’s just noisy – it doesn’t behave according to plan!



Review: Expectations
§ Real valued functions of random variables:

§ Expectation of a function of a random variable

§ Example: Expected value of a fair die roll
X P f
1 1/6 1

2 1/6 2

3 1/6 3

4 1/6 4

5 1/6 5

6 1/6 6



Utilities
§ Utilities are functions from outcomes (states of the 

world) to real numbers that describe an agent’s 
preferences

§ Where do utilities come from?
§ In a game, may be simple (+1/-1)
§ Utilities summarize the agent’s goals
§ Theorem: any set of preferences between outcomes can be 

summarized as a utility function (provided the preferences meet 
certain conditions)

§ In general, we hard-wire utilities and let actions emerge 
(why don’t we let agents decide their own utilities?)

§ More on utilities soon…


