Machine Learning as Search \& as
 Continuous Optimization

CSE 573

DANIEL WELD

Acknowledgements

Some of the material in the decision trees presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:

- http://www.cs.cmu.edu/~awm/tutorials

Improved by

- Carlos Guestrin, Luke Zettlemoyer, Dan Weld

Logistics

PS1 due Thurs 1/19
PS2 due Thurs 1/26

Machine Learning

Study of algorithms that improve their performance at some task with experience

Space of ML Problems

Type of Supervision

(eg, Experience, Feedback)

	Labeled Examples	Reward	Examples w/o labels
Discrete Function	Classification		Clustering
Continuous Function	Regression		
Policy	Apprenticeship Learning	Reinforcement Learning	

Classification

from data to discrete classes

Task:
Predicting class membership (eg spam or not?)

$$
\text { Output = F: messages } \rightarrow \text { T/F }
$$

Performance: Accuracy of prediction
Learning as
Labeled examplion $\left\{\ldots\right.$ <message ${ }_{\mathrm{i}}, \mathrm{T}>\ldots$ \}

Training Data for Spam Filtering

Weather prediction

Object detection

(Prof. H. Schneiderman)

Example training images for each orientation

The classification pipeline

Training

```
Osman Khan to Carlos
sounds good
tok
Cartos Suestrin wrote:
Lefts ty to chat on Fn
```

Carlos

Natural LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle,
pay only 55.95 for shipping mfw rlk sem |x
pay only $\$ 5.95$ for shipping mfw rik ssom $\mid x$
Jaquolyn Halloy to nherrein, bec: thehormey, bcc: ang show detalilis 9.52 PM (1 hour ago) R Reply *
$===$ Natural WeightLOSS Solution $==$

- Reapera Weightloss
- Rapil Weightioss

- Meaensel and Confidencene Yourty Your Bod

Testing

Welcome to New Media Installation: Art that Learns

Carios Guestrin to 10615 -announce, Osman, Miche show detalis $3: 15 \mathrm{PM}(8$ hours ago)) Reply -
Welcome to New Media Installation:Art hat Learns

Classifier

Hypothesis:
Function for labeling examples

Key Concepts

Generalization

Hypotheses must generalize to correctly classify instances not in the training data.

Simply memorizing training examples is a consistent hypothesis that does not generalize.

ML = Function Approximation

May not be any perfect fit
Classification ~ discrete functions

$$
\begin{aligned}
h(x)= & \text { contains ('nigeria', x) } \\
& \text { contains ('wire-transfer', x) }
\end{aligned}
$$

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when PREJUDICE meets DATA!

Bias

The nice word for prejudice is "bias".

- Different from "Bias" in statistics

What kind of hypotheses will you consider?

- What is allowable range of functions you use when approximating?
- E.g., pure conjunctions, linear separators, ...

What kind of hypotheses do you prefer?

- E.g., simple with few parameters

"It is needless to do more when less will suffice"
- William of Occam,
died 1349 of the Black plague

ML as Optimization

Specify Preference Bias

- aka "Loss Function"

Solve using optimization

- Combinatorial
- Convex
- Linear
- Nasty

Overfitting

Hypothesis H is overfit when $\exists \mathrm{H}^{\prime}$ and
${ }^{\circ} \mathrm{H}$ has smaller error on training examples, but
${ }^{\circ} \mathrm{H}$ has bigger error on test examples

Overfitting

Hypothesis H is overfit when $\exists \mathrm{H}^{\prime}$ and

- H has smaller error on training examples, but
- H has bigger error on test examples

Causes of overfitting

- Training set is too small
- Large number of features

Some solutions

- Validation set
- Regularization

Overfitting

Accuracy

On training data
On test data

Model complexity (e.g., number of nodes in decision tree)

A learning problem: predict fuel efficiency

From the UCI repository (thanks to Ross Quinlan)

- 40 Records
- Discrete data (for now)
- Predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75 to 78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	$75 \mathrm{to78}$	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Need to find "Hypothesis":
$f: X \rightarrow Y$

How Represent Function?

General Propositional Logic?

maker=asia \vee weight=low

Need to find "Hypothesis": $\quad f: X \rightarrow Y$

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_{i}
- Each branch assigns an attribute value $x_{i}=v$
- Each leaf assigns a class y
- To classify input x ? traverse the tree from root to leaf, output the labeled y

What functions can be represented?

cyl=3 $\vee($ cyl $=4 \wedge($ maker=asia \vee maker=europe $)) \vee \ldots$

Are all decision trees equal?

Many trees can represent the same concept
But, not all trees will have the same size!

$$
\text { e.g., } \phi=(A \wedge B) \vee(\neg A \wedge C)
$$

How to find the best tree?

Learning decision trees is hard!!!

Finding the simplest (smallest) decision tree is an NP-complete problem [Hyafil \& Rivest '76]

What to do?

Learning as Search

Nodes?
Operators?
Start State?
Goal?
Search Algorithm?
Heuristic?

The Starting Node: What is the Simplest Tree?

predict mpg=bad

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75 to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Is this a good tree?

[22+, 18-]
Means:
correct on 22 examples incorrect on 18 examples

Operators: Improving the Tree

predict mpg=bad

Recursive Step

Take the Original Dataset.

Records in which cylinders
$=5$

Records in which cylinders

$$
=6
$$

Records in which cylinders $=8$

Recursive Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia
(Similar recursion in the other cases)

Two Questions

Hill Climbing Algorithm:

- Start from empty decision tree
- Split on the best attribute (feature)
- Recurse

1. Which attribute gives the best split?
2. When to stop recursion?

Splitting: choosing a good attribute

Would we prefer to split on X_{1} or X_{2} ?

Idea: use counts at leaves to define probability distributions so we can

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Measuring uncertainty

Good split if we are more certain about classification after split

- Deterministic good (all true or all false)
- Uniform distribution? Bad
- What about distributions in between?

$$
\begin{array}{|l|l|l|l|}
\hline P(Y=A)=1 / 2 & P(Y=B)=1 / 4 & P(Y=C)=1 / 8 & P(Y=D)=1 / 8 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline P(Y=A)=1 / 3 & P(Y=B)=1 / 4 & P(Y=C)=1 / 4 & P(Y=D)=1 / 6 \\
\hline
\end{array}
$$

Which attribute gives the best split?

A_{1} : The one with the highest information gain

Defined in terms of entropy

A_{2} : Actually many alternatives, eg, accuracy
Seeks to reduce the misclassification rate

Entropy

Entropy $H(Y)$ of a random variable Y

$$
H(Y)=-\sum_{i=1}^{k} P\left(Y=y_{i}\right) \log _{2} P\left(Y=y_{i}\right)
$$

More uncertainty, more entropy! Information Theory interpretation: $H(Y)$ is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Entropy Example

$$
H(Y)=-\sum_{i=1}^{k} P\left(Y=y_{i}\right) \log _{2} P\left(Y=y_{i}\right)
$$

$$
P(Y=t)=5 / 6
$$

$$
P(Y=f)=1 / 6
$$

$H(Y)=-5 / 6 \log _{2} 5 / 6-1 / 6 \log _{2} 1 / 6$ $=0.65$

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F

Conditional Entropy

Conditional Entropy $H(Y \mid X)$ of a random variable Y conditioned on a random variable X

$$
H(Y \mid X)=-\sum_{j=1}^{v} P\left(X=x_{j}\right) \sum_{i=1}^{k} P\left(Y=y_{i} \mid X=x_{j}\right) \log _{2} P\left(Y=y_{i} \mid X=x_{j}\right)
$$

Example:

$$
\begin{aligned}
& P\left(X_{1}=t\right)=4 / 6 \\
& P\left(X_{1}=f\right)=2 / 6
\end{aligned}
$$

$$
\begin{aligned}
H\left(Y \mid \mathrm{X}_{1}\right)=- & 4 / 6\left(1 \log _{2} 1+0 \log _{2} 0\right) \\
& -2 / 6\left(1 / 2 \log _{2} 1 / 2+1 / 2 \log _{2} 1 / 2\right)
\end{aligned}
$$

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F

$=2 / 6$
$=0.33$

Information Gain

Advantage of attribute - decrease in entropy (uncertainty) after splitting

$$
I G(X)=H(Y)-H(Y \mid X)
$$

In our running example:

$$
\begin{aligned}
\mathrm{IG}\left(\mathrm{X}_{1}\right) & =\mathrm{H}(\mathrm{Y})-\mathrm{H}\left(\mathrm{Y} \mid \mathrm{X}_{1}\right) \\
& =0.65-0.33
\end{aligned}
$$

$\mathrm{IG}\left(\mathrm{X}_{1}\right)>0 \rightarrow$ we prefer the split!

X_{1}	X_{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F

Learning Decision Trees

Start from empty decision tree
Split on next best attribute (feature)

- Use information gain (or...?) to select attribute:
$\arg \max _{i} I G\left(X_{i}\right)=\arg \max _{i} H(Y)-H\left(Y \mid X_{i}\right)$
Recurse

Suppose we want to predict MPG

Now, Look at all the information gains...

Tree After One Iteration

When to Terminate?

Base Cases: An idea

Base Case One: If all records in current data subset have the same output then don't recurse

Base Case Two: If all records have exactly the same set of input attributes then don't recurse

The problem with Base Case 3

$$
y=a \operatorname{XOR} b
$$

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

The information gains:

The resulting decision tree:
y values: 01
root
22
Predict 0

But Without Base Case 3:

The resulting decision tree:
$y=a \operatorname{XOR} b$

a	b	y
O	O	O
O	1	1
1	O	1
1	1	O

So: Base Case 3? Include or Omit?

General View of a Classifier

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle with one of the K classes.

Ok, so how does it perform?

Decision trees will overfit

Our decision trees have no learning bias

- Training set error is always zero!
- (If there is no label noise)
- Lots of variance
- Will definitely overfit!!!
- Must introduce some bias towards simpler trees

Why might one pick simpler trees?

Occam's Razor

Why Favor Short Hypotheses?
Arguments for:

- Fewer short hypotheses than long ones
\rightarrow A short hyp. less likely to fit data by coincidence
\rightarrow Longer hyp. that fit data may might be coincidence
Arguments against:
${ }^{\circ}$ Argument above uses fact that hypothesis space is small!
- What is so special about small sets based on the complexity of each hypothesis?

How to Build Small Trees

Several reasonable approaches:

Stop growing tree before overfit

- Bound depth or \# leaves
- Base Case 3
- Doesn't work well in practice

Grow full tree; then prune

- Optimize on a held-out (development set)
- If growing the tree hurts performance, then cut back
- Con: Requires a larger amount of data...
- Use statistical significance testing
- Test if the improvement for any split is likely due to noise
- If so, then prune the split!
- Convert to logical rules
- Then simplify rules

Reduced Error Pruning
 Split data into training \& validation sets (10-33\%)

Train on training set (overfitting)
Do until further pruning is harmful:

1) Evaluate effect on validation set of pruning each possible node (and tree below it)
2) Greedily remove the node that most improves accuracy of validation set

Alternatively

Chi-squared pruning

- Grow tree fully
- Consider leaves in turn
- Is parent split worth it?

Compared to Base-Case 3?

A chi-square test

```
mpg values: bad good
maker america 0 10 \ H(mpg|maker = america)=0
    asia 25 \squareH(mpg|maker = asia)=0.863121
    europe 2 2 \square H(mpg| maker = europe )=1
H(mpg)=0.702467 H(mpg|maker) = 0.478183
    IG(mpg|maker) = 0.224284
```

Suppose that mpg was completely uncorrelated with maker. What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 13.5%
Such hypothesis tests are relatively easy to compute, but involved

Using Chi-squared to avoid overfitting

Build the full decision tree as before
But when you can grow it no more, start to prune:

- Beginning at the bottom of the tree, delete splits in which $p_{\text {chance }}>$ MaxPchance
- Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Regularization

Note for Future: MaxPchance is a regularization parameter that helps us bias towards simpler models

We'll learn to choose the value of magic parameters like this one later!

ML as Optimization

Greedy search for best scoring hypothesis
Where score =

- Fits training data most accurately?
- Sum: training accuracy - complexity penalty

Advanced Decision Trees

Attributes with:

- Numerous Possible Values
- Continuous (Ordered) Values
- Missing Values

decision tree summary

Decision trees are one of the most popular ML tools

- Easy to understand, implement, and use
- Computationally cheap (to solve heuristically)

Information gain to select attributes (ID3, C4.5,...)
Presented for classification, can be used for regression and density estimation too

Decision trees will overfit!!!

- Must use tricks to find "simple trees", e.g.,
- Fixed depth/Early stopping
- Pruning
- Hypothesis testing

Loss Functions

How measure quality of hypothesis?

Loss Functions

How measure quality of hypothesis?
$\mathrm{L}(\mathrm{x}, \mathrm{y}, \hat{\mathrm{y}})=$ utility(result of using y given input of x)

- utility(result of using \hat{y} given input of x)

L(edible, poison)
L(poison, edible)

Common Loss Functions

0/1 loss
0 if $y=\hat{y}$ else 1

Absolute value loss

Squared error loss $\quad|y-\hat{y}|^{2}$

Overview of Learning

Type of Supervision
(eg, Experience, Feedback)

	Labeled Examples	Reward	Nothing
Discrete Function	Classification		Clustering
Continuous Function	Regression		
Policy	Apprenticeship Learning	Reinforcement Learning	

Polynomial Curve Fitting

Hypothesis Space

$$
y(x, \mathbf{w})=w_{0}+w_{1} x+w_{2} x^{2}+\ldots+w_{M} x^{M}=\sum_{j=0}^{M} w_{j} x^{j}
$$

Sum-of-Squares Error Function

$$
E(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}
$$

$1^{\text {st }}$ Order Polynomial

$3^{\text {rd }}$ Order Polynomial

$9^{\text {th }}$ Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error: $\quad E_{\text {RMS }}=\sqrt{2 E\left(\mathbf{w}^{\star}\right) / N}$

Polynomial Coefficients

	$M=0$	$M=1$	$M=3$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

Data Set Size:
 $N=15$

9th Order Polynomial

Data Set Size:
 $N=100$

9th Order Polynomial

Regularization

$$
\widetilde{E}(\mathbf{w})=\frac{1}{2} \sum_{n=1}^{N}\left\{y\left(x_{n}, \mathbf{w}\right)-t_{n}\right\}^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}
$$

Penalize large coefficient values

Regularization:

$\ln \lambda=-18$

Regularization:

$\ln \lambda=0$

Regularization: $E_{\text {RMS }}$ vs. $\ln \lambda$

Polynomial Coefficients

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

Part 2

Continuous Optimization

Machine Learning

Supervised Learning

Parametric Non-parametric

Y Continuous

Gaussians
Learned in closed form
Y Discrete
Decision Trees
Greedy search; pruning
Probability of Class | Features 1. Learn $P(Y), P(X \mid Y)$; apply Bayes
2. Learn $P(Y \mid X)$ w/ gradient descent

Non-probabilistic Linear Classifier
Perceptron - w/ gradient descent

Hypothesis Expressiveness

LINEAR
Naïve Bayes
Logistic Regression
Perceptron
Support Vector Machines

NONLINEAR
Decision Trees
Neural Networks
Ensembles
Kernel Methods
Nearest Neighbor
Graphical Models

Logistic Regression

Want to Learn: h:X \mapsto Y

- X - features
- Y - target classes

Probabilistic Discriminative Classifier

- Assume some functional form for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- Logistic Function
- Accepts both discrete \& continuous features
- Estimate parameters of $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ directly from training data
- This is the 'discriminative' model
- Directly learn $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- But cannot generate a sample of the data,
- No way to compute P(X)

Earthquake or Nuclear Test?

$$
P\left(Y=1 \mid X=<X_{1}, \ldots X_{n}>\right)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

implies
$\ln \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=w_{0}+\sum_{i} w_{i} X_{i}$
linear classification rule!

Logistic w/ Initial Weights

$$
w_{0}=20 \quad w_{1}=-5 \quad w_{2}=10
$$

$\operatorname{Loss}\left(\mathrm{H}_{\mathrm{w}}\right)=\operatorname{Error}\left(\mathrm{H}_{\mathrm{w}}\right.$, data)
Minimize Error \rightarrow Maximize $I(w)=\ln P\left(D_{Y} \mid D_{X}, H_{w}\right)$

Update rule:

$$
\Delta \mathbf{w}=\eta \nabla_{\mathbf{w}} l(\mathbf{w})
$$

$$
w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\underbrace{\eta \frac{\partial l(\mathbf{w})}{\partial w_{i}}}
$$

Gradient Ascent

$$
w_{0}=40 \quad w_{1}=-10 \quad w_{2}=5
$$

Maximize $I(w)=\ln P\left(D_{Y} \mid D_{x}, H_{w}\right)$

Update rule:

$$
\begin{gathered}
\Delta \mathbf{w}=\eta \nabla_{\mathbf{w}} l(\mathbf{w}) \\
w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta \frac{\partial l(\mathbf{w})}{\partial w_{i}}
\end{gathered}
$$

Root Finding

Saddle point

Fig from "Deep Learning" by Goodfellow et al. http://www.deeplearningbook.org/contents/numerical.html

Gradient Descent

Assume we have a continuous function: $f\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and we want minimize over continuous variables $\mathrm{X} 1, \mathrm{X} 2, . ., \mathrm{Xn}$

1. Compute the gradients for all i: $\partial f\left(x_{1}, x_{2}, \ldots, x_{N}\right) / \partial x_{i}$
2. Take a small step downhill in the direction of the gradient:

$$
x_{i} \leftarrow x_{i}-\lambda \partial f\left(x_{1}, x_{2}, \ldots, x_{N}\right) / \partial x_{i}
$$

3. Repeat.

- How to select step size, λ
- Line search: successively double
- until f starts to increase again

Higher Order Derivatives

Fig from "Deep Learning" by Goodfellow et al. http://www.deeplearningbook.org/contents/numerical.html

Newton's Method

Assume function can be locally approximated with quadratic Use both first \& second derivatives

Newton's Method

Newton's Method

Newton's Method

Newton's Method

At each step:

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

Requires $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives
Quadratic convergence

Newton's Method in

 Multiple DimensionsReplace $1^{\text {st }}$ derivative with gradient, $2^{\text {nd }}$ derivative with Hessian

$$
\begin{gathered}
f(x, y) \\
\nabla f=\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \\
H=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)
\end{gathered}
$$

Newton's Method in Multiple Dimensions

Replace $1^{\text {st }}$ derivative with gradient, $2^{\text {nd }}$ derivative with Hessian

So,

$$
\vec{x}_{k+1}=\vec{x}_{k}-H^{-1}\left(\vec{x}_{k}\right) \nabla f\left(\vec{x}_{k}\right)
$$

Tends to be extremely fragile unless function very smooth and starting close to minimum

Problem With Steepest Descent

Conjugate Gradient Methods

Idea: avoid "undoing" minimization that's already been done

Walk along direction

$$
d_{k+1}=-g_{k+1}+\beta_{k} d_{k}
$$

Polak and Ribiere formula:

$$
\beta_{k}=\frac{g_{k+1}^{\mathrm{T}}\left(g_{k+1}-g_{k}\right)}{g_{k}^{\mathrm{T}} g_{k}}
$$

Conjugate Gradient Methods

Conjugate gradient implicitly obtains information about Hessian

For quadratic function in n dimensions, gets exact solution in n steps (ignoring roundoff error)

Works well in practice...

