CSE 573: Artificial Intelligence

Search: Heuristics and Pattern DBs

Dan Weld

With slides from
Dan Weld, Dan Klein, Stuart Russell, Travis Mandel, Andrew Moore, Luke Zettlemoyer

Search thru a

Problem Space / State Space
* Input:
= Set of states
» Operators [and costs]
= Start state
» Goal state [test]

* Output:

» Path: start = a state satisfying goal test
* [May require shortest path]
* [Sometimes just need state passing test]

Heuristics

It's what makes search actually work

Traveling Salesman

* Input: undirected graph

= QOutput: connected path traversing each
vertex exactly once

= As a search problem
= States?

Graphs w/ partial paths

= Operators?

Adding a edge to the path

20

Traveling Salesman

Input: undirected graph

= QOutput: connected path traversing each
vertex exactly once

= As a search problem
» States? Graphs w/ partial paths
= Operators? Adding a edge to the path
» Heuristic estimate of cost to complete a path?

= \What to relax?

= What is a path?
= Subgraph...
= Degree 2

= Min spanning tree
= O(n?)

21

Heuristics for eight puzzle

=

213

5

1|6

8

d

start

= \What can we relax?

9

1

2 |3

4

5| 6

7/

‘B

goal

h1 = number of tiles in wrong place

h2 = 2. distances of tiles from correct loc

29

Relaxed Problem

Can describe move as a Strips operator |

Predicates:

On(x,y) tilexisoncelly

Clear(y) notilesareoncelly
Adj(y, z) cell yis adjacentto cell z

States are conjunctions, eg initial state:
On(6,1-1), On(3, 2-1), ..., Clear(1-2), Adj(1-1, 1-2), Adj(...

Move(x,y,z)

= Preconditions: on(x,y), ¢

= Add-list:
= Delete-list:

on(x,z), ¢
on(x,y), ¢

30

Relaxed Problem

Can describe move as a Strips operator |

Predicates:

On(x,y) tilexisoncelly
Clear(y) notilesareoncelly
Adj(y, z) cell yis adjacentto cell z

States are conjunctions, eg initial state:
On(6,1-1), On(3, 2-1), ..., Clear(1-2), Adj(1-1, 1-2), Adj(...

Move(x,y,z)

* Preconditions: on(x,y), d‘;&z@ adj(y,z)

= Add-list:
= Delete-list:

on(x,z), clear(y) Sum OF Mq
on(x,y), clear(z)

Nh
Mtan distancg
s

31

Importance of Heuristics

h1 = number of tiles in wrong place
h2 = 2. distances of tiles from correct loc
D IDS A*(hl) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

OUJ

A\

Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
= 24 Puzzle 65000 years

Need even better heuristics!

34
Adapted from Richard Korf presentation

© Daniel S. Weld

Subgoal Interactions

= Manhattan distance assumes

= Each tile can be moved independently of
others

= Underestimates because
= Doesn’t consider interactions between tiles

—
N
W

N
(@)
O1

© Daniel S. Weld 35

Adapted from Richard Korf presentation

Pattern Databases

[Culberson & Schaeffer 1996]

112(3 |4

= Pick any subset of tiles 56 |7 |8
“E.g., 3,7, 11,12, 13, 14, 15 11|12
= (or as drawn) .

* Precompute a table
= Optimal cost of solving just these tiles

» For all possible configurations
= 57 Million in this case

= Use A* or IDA*

» State = position of just these tiles (& blank)

36
Adapted from Richard Korf presentation

© Daniel S. Weld

Using a Pattern Database

= As each state is generated
= Use position of chosen tiles as index into DB
» Use lookup value as heuristic, h(n)

= Admissible?
= Monotonic?

37
Adapted from Richard Korf presentation

© Daniel S. Weld

Combining Multiple Databases

12134

= Can choose another set of tileg| | (6 |7 |8
= Precompute multiple tables 91101112
= How combine table values? 13114 15 |l

* Min, Max, Sum, RandomlyChoose

= E.g. Optimal solutions to Rubik’s cube
* First found w/ IDA* using pattern DB heuristics
» Multiple DBs were used (dif cubie subsets)

* Most problems solved optimally in 1 day
» Compare with 574,000 years for IDDFS
38

© Daniel S. Weld Adapted from Richard Korf presentation

Drawbacks of Standard Pattern DBs

= Since we can only take max
* Diminishing returns on additional DBs

= \Would like to be able to add values

39

© Daniel S. Weld Adapted from Richard Korf presentation

Disjoint Pattern DBs

1123 |4

516 |7 |8

= Partition tiles into disjoint sets 910/11l12
* For each set, precompute table 13|14 15.

= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million
= During search
= Look up heuristic values for each set
» Can add values without overestimating!

= Manhattan distance is a special case of this

idea where each set is a single tile
40

© Daniel S. Weld Adapted from Richard Korf presentation

Performance

* 15 Puzzle: 2000x speedup vs Manhattan dist

* |IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
* |DA* can solve random instances in 2 days.
= Requires 4 DBs as shown

= Each DB has 128 million entries
= Without PDBs: 65,000 years

41
© Daniel S. Weld Adapted from Richard Korf presentation

Alternative Approach...

= Optimality is nice to have, but...

= Sometimes space is too vast! Find
suboptimal solution using local search.

© Daniel S. Weld

42

