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Search thru a

Problem Space / State Space
* Input:
= Set of states
» Operators [and costs]
= Start state
» Goal state [test]

* Output:

» Path: start = a state satisfying goal test
* [May require shortest path]
* [Sometimes just need state passing test]




Heuristics

It's what makes search actually work



Traveling Salesman

* Input: undirected graph

= QOutput: connected path traversing each
vertex exactly once

= As a search problem
= States?

Graphs w/ partial paths

= Operators?

Adding a edge to the path
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Traveling Salesman

Input: undirected graph

= QOutput: connected path traversing each
vertex exactly once

= As a search problem
» States? Graphs w/ partial paths
= Operators? Adding a edge to the path
» Heuristic estimate of cost to complete a path?

= \What to relax?

= What is a path?
= Subgraph...
= Degree 2

= Min spanning tree
= O(n?)
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Heuristics for eight puzzle
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h1 = number of tiles in wrong place

h2 = 2. distances of tiles from correct loc
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Relaxed Problem

Can describe move as a Strips operator |

Predicates:

On(x,y) tilexisoncelly

Clear(y) notilesareoncelly
Adj(y, z) cell yis adjacentto cell z

States are conjunctions, eg initial state:
On(6,1-1), On(3, 2-1), ..., Clear(1-2), Adj(1-1, 1-2), Adj(...

Move(x,y,z)

= Preconditions: on(x,y), ¢

= Add-list:
= Delete-list:

on(x,z), ¢
on(x,y), ¢

30



Relaxed Problem

Can describe move as a Strips operator |

Predicates:

On(x,y) tilexisoncelly
Clear(y) notilesareoncelly
Adj(y, z) cell yis adjacentto cell z

States are conjunctions, eg initial state:
On(6,1-1), On(3, 2-1), ..., Clear(1-2), Adj(1-1, 1-2), Adj(...

Move(x,y,z)

* Preconditions: on(x,y), d‘;&z@ adj(y,z)

= Add-list:
= Delete-list:

on(x,z), clear(y) Sum OF Mq
on(x,y), clear(z)

Nh
Mtan distancg
s
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Importance of Heuristics

h1 = number of tiles in wrong place
h2 = 2. distances of tiles from correct loc
D IDS A*(hl)  A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor
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Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
= 24 Puzzle 65000 years

Need even better heuristics!
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Subgoal Interactions

= Manhattan distance assumes

= Each tile can be moved independently of
others

= Underestimates because
= Doesn’t consider interactions between tiles

—
N
W

N
(@)
O1

© Daniel S. Weld 35

Adapted from Richard Korf presentation



Pattern Databases

[Culberson & Schaeffer 1996]

112(3 |4

= Pick any subset of tiles 56 |7 |8
“E.g., 3,7, 11,12, 13, 14, 15 11|12
= (or as drawn) .

* Precompute a table
= Optimal cost of solving just these tiles

» For all possible configurations
= 57 Million in this case

= Use A* or IDA*

» State = position of just these tiles (& blank)
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Using a Pattern Database

= As each state is generated
= Use position of chosen tiles as index into DB
» Use lookup value as heuristic, h(n)

= Admissible?
= Monotonic?
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Combining Multiple Databases

12134

= Can choose another set of tileg| | (6 |7 |8
= Precompute multiple tables 91101112
= How combine table values? 13114 15 |l

* Min, Max, Sum, RandomlyChoose

= E.g. Optimal solutions to Rubik’s cube
* First found w/ IDA* using pattern DB heuristics
» Multiple DBs were used (dif cubie subsets )

* Most problems solved optimally in 1 day
» Compare with 574,000 years for IDDFS
38

© Daniel S. Weld Adapted from Richard Korf presentation



Drawbacks of Standard Pattern DBs

= Since we can only take max
* Diminishing returns on additional DBs

= \Would like to be able to add values
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Disjoint Pattern DBs

1123 |4

516 |7 |8

= Partition tiles into disjoint sets 910/11l12
* For each set, precompute table 13|14 15.

= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million
= During search
= Look up heuristic values for each set
» Can add values without overestimating!

= Manhattan distance is a special case of this

idea where each set is a single tile
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Performance

* 15 Puzzle: 2000x speedup vs Manhattan dist

* |IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
* |DA* can solve random instances in 2 days.
= Requires 4 DBs as shown

= Each DB has 128 million entries
= Without PDBs: 65,000 years
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Alternative Approach...

= Optimality is nice to have, but...

= Sometimes space is too vast! Find
suboptimal solution using local search.

© Daniel S. Weld
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