CSE 573: Artificial Intelligence

Problem Spaces & Search

Dan Weld

With slides from Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer, Dana Nau...

Outline

- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Iterative Deepening Search
 - Uniform-Cost Search
- Heuristic Search Methods
 - Uniform Cost
 - Greedy
 - A*
 - IDA*
- Heuristic Generation

Search thru a Problem Space (aka State Space)

- Input:
 - Set of states
 - Operators [and costs]
 - Start state
 - Goal state [or test]
 - Output:
 - Path: start ⇒ a state satisfying goal test
 [May require shortest path]
 [Sometimes just need a state that passes test]

Functions: States \rightarrow States

Aka "Successor Function"

N Queens Problem

Place N queens so they don't attack each other (same row, same col, same diagonal)

States

 Chess board with
 0 or more queens

 Operators

Add a queen
Initial

No queens

Goal

N queens

Getting a PhD In CSE

Input:

- Set of states
- Operators [costs]
- Start state
- Goal state (test)

Best-First Search

- Generalization of breadth-first search
- Fringe = Priority queue of nodes to be explored
- Ranking function *f(n)* applied to each node

```
Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add new children of node to queue, sorted
```

"expanding the node" 55

Old Friends

- Breadth First =
 - Best First
 - with f(n) = depth(n)
- Dijkstra's Algorithm (Uniform cost) =
 - Best First
 - with f(n) = the sum of edge costs from start to n

What is a *Heuristic*?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

Examples: Manhattan distance: 10+5 = 15 Euclidean distance: 11.2

Greedy Search

Expand the node that seems closest...

What can go wrong?

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)

- g(n) = sum of costs from start to n
- h(n) = estimate of lowest cost path n → goal
 h(goal) = 0

Best of both worlds...

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)

- g(n) = sum of costs from start to n
- h(n) = estimate of lowest cost path n → goal
 h(goal) = 0

If h(n) is admissible and monotonic then A* is **optimal**

Underestimates (≤) cost of reaching goal from node

f values never decrease From node to descendants (triangle inequality)

Is Manhattan distance admissible?

Underestimate?

Is Manhattan distance monotonic?

f values increase from node to children
(triangle inequality)

Monotonicity (aka Consistency)

Admissible Heuristics

Monotonic/Consistent Heuristics

Monotonic/Consistent Heuristics

Optimality of A* (tree search)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$$

> $g(G_1) \qquad \text{since } G_2 \text{ is suboptimal}$
\ge f(n) \quad \text{since } h \text{ is admissible}

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion

Monotonicity required for proof in graph search version

Monontonicity Required to Ensure A* Graph Search is Optimal

Monotonicity needed to ensure optimality Given GS optimization of queue Suppose node(a>b>d) has been expanded but not node(a>c>d) It won't be, because it's state (d) is closed

Optimality of A*

Lemma 1

If h(n) is monotonic, then the values of f along any path are non decreasing ~ by defn.

Lemma 2

Whenever A* selects node n for expansion, the optimal path to that node has been found

Assume not. Then \exists node m on frontier which is on a better path to n, but by lemma 1, it would have been explored.

Lemma 3

A* expands nodes in order of increasing f value

Optimality Continued

A* gradually adds "f-contours" of nodes. Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$ First goal expanded must have lowest f-value

A* Example

European Example

A* Summary

Produces optimal cost solution!

Does so quite quickly (focused)

Cons

Maintains priority queue...

Which can get exponentially big 🛞

Iterative-Deepening A*

- Like iterative-deepening depth-first, but...
- Depth bound modified to be an f-limit
 - Start with f-limit = h(start)
 - Perform depth-first search (using stack, no queue)
 - Prune any node if f(node) > f-limit
 - Next f-limit = min-cost of any node pruned

IDA* Analysis

- Complete & Optimal (ala A*)
- Space usage ∞ depth of solution
- Each iteration is DFS no priority queue!
- # nodes expanded relative to A* ??
 - Depends on # unique values of heuristic function
 - In 8 puzzle: few values \Rightarrow close to # A* expands
 - In traveling salesman: each f value is unique ⇒ 1+2+...+n = O(n²) where n=nodes A* expands if n is too big for main memory, n² is too long to wait!

Forgetfulness

- A* used exponential memory
- How much does IDA* use?
 - During a run?
 - In between runs?
 - SMA*

Which Algorithm?

• Uniform cost search (UCS):

Which Algorithm?

A*, Manhattan Heuristic:

Which Algorithm?

Best First / Greedy, Manhattan Heuristic:

Demo

http://qiao.github.io/PathFinding.js/visual/

SUGGESTED BY Fernando Centurion