
CSE 573: Artificial Intelligence

Problem Spaces & Search

With slides from 
Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer, Dana Nau…

Dan Weld



Outline
§ Search Problems
§ Uninformed Search Methods

§ Depth-First Search
§ Breadth-First Search
§ Iterative Deepening Search
§ Uniform-Cost Search

§ Heuristic Search Methods
§ Uniform Cost
§ Greedy
§ A*
§ IDA*

§ Heuristic Generation



Search thru a 

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [or test]

• Path: start Þ a state satisfying goal test
[May require shortest path]
[Sometimes just need a state that passes test]

• Input:

• Output:

Problem Space (aka State Space) 
Functions: States à States

Aka “Successor Function”



N Queens Problem

§ States

§ Operators

§ Initial

§ Goal

14

Chess board with  
0 or more queens

Add a queen

No queens

N queens

Place N queens so they don’t attack each other (same row, 
same col, same diagonal)



Getting a PhD In CSE

Input:
§ Set of states

§ Operators [costs]

§ Start state

§ Goal state (test)



55

Best-First Search
§ Generalization of breadth-first search
§ Fringe = Priority queue of nodes to be explored
§ Ranking function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add new children of node to queue, sorted

“expanding the node”



56

Old Friends
§ Breadth First = 

§ Best First
§ with f(n) = depth(n)

§ Dijkstra’s Algorithm (Uniform cost) = 
§ Best First
§ with f(n) = the sum of edge costs from start to n



What is a Heuristic?
§ An estimate of how close a state is to a goal
§ Designed for a particular search problem

10

5
11.2

§ Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2



Greedy Search
Expand the node that seems closest…

What can go wrong?

B

A

start

goal



A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
§ g(n) = sum of costs from start to n
§ h(n) = estimate of lowest cost path n ® goal

h(goal) = 0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds…



A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
§ g(n) = sum of costs from start to n
§ h(n) = estimate of lowest cost path n ® goal

h(goal) = 0

If h(n) is admissible and monotonic
then A* is optimal

}

{



Is Manhattan distance admissible?
§ Underestimate?

69

S

G



Is Manhattan distance monotonic?
§ f values increase from node to children
§ (triangle inequality)

70

S

G



Monotonicity (aka Consistency)

71

Defn monotonic:
F(a)           ≥ F(b)
G(a)+H(a) ≥ G(b)+H(b)

≥ G(a)+ab + H(b)
H(a) ≥  ab + H(b)a

G

G(a)
ab

H(a)

b

H(b)



Admissible Heuristics

73

State (x)

Va
lu

e

State (x)

Admissible Not Admissible

True (optimal) cost remaining
Heuristic-estimated cost remaining

Slide credit: Travis Mandel



Monotonic/Consistent Heuristics

74
74

State (x) State (x)

Monotonic Not Monotonic (but admissible)

True (optimal) cost remaining
h(x) Heuristic-estimated cost remaining

Va
lu

e

Slide credit: Travis Mandel



Monotonic/Consistent Heuristics

75
75

State (x)

Va
lu

e

State (x)

Monotonic Not Monotonic (but admissible)

True (optimal) cost remaining
h(x) Heuristic-estimated cost remaining
f(x) Heuristic + cost so farSlide credit: Travis Mandel



76

Optimality of A* (tree search) 

Monotonicity required for proof in graph search version



78

Monontonicity Required to 
Ensure A* Graph Search is Optimal

Monotonicity needed to ensure optimality 
Given GS optimization of queue
Suppose node(a>b>d) has been expanded but not node(a>c>d)

It won’t be, because it’s state (d) is closed

a

G

1

c

g(d) = 4 
h(d) = 3
f(d)=7

b

d

2.1

1

3 g(c) = 2.1 
h(c) = 5
f(c) = 7.1

5



Optimality of A*

§ Lemma 1
If h(n) is monotonic, then the values of f along 
any path are non decreasing ~ by defn.

§ Lemma 2
Whenever A* selects node n for expansion, the 
optimal path to that node has been found

Assume not. Then ∃node m on frontier which is on 
a better path to n, but by lemma 1, it would have 
been explored.

§ Lemma 3
A* expands nodes in order of increasing f value 79



80

Optimality Continued
A* gradually adds “f-contours” of nodes.
Contour i has all nodes with f = fi, where fi <fi+1

First goal expanded must have lowest f-value
à Lowest cost, since h(goal) = 0



81

A* Example



82

A* Example



83

A* Example



84

A* Example



85

A* Example



86

A* Example



87

European Examplestart

end

1
2

3

4

5



88

A* Summary

§ Pros

§ Cons

Produces optimal cost solution!

Does so quite quickly (focused)

Maintains priority queue…

Which can get exponentially big L



89

Iterative-Deepening A*
§ Like iterative-deepening depth-first, but...
§ Depth bound modified to be an f-limit

§ Start with  f-limit = h(start)
§ Perform depth-first search (using stack, no queue)

§ Prune any node if f(node) > f-limit
§ Next f-limit = min-cost of any node pruned

a

b

c

d

e

f

FL=15
FL=21



90

IDA* Analysis
§ Complete & Optimal (ala A*)
§ Space usage µ depth of solution
§ Each iteration is DFS - no priority queue!
§ # nodes expanded relative to A* ??

§ Depends on # unique values of heuristic function
§ In 8 puzzle: few values Þ close to # A* expands
§ In traveling salesman: each f value is unique

Þ 1+2+…+n  = O(n2)    where n=nodes A* expands
if n is too big for main memory, n2 is too long to wait!



© Daniel S. Weld 91

Forgetfulness

§ A* used exponential memory
§ How much does IDA* use?

§ During a run?
§ In between runs?

§ SMA*



94

Which Algorithm?
§ Uniform cost search (UCS):



Which Algorithm?
§ A*, Manhattan Heuristic:



Which Algorithm?
§ Best First / Greedy, Manhattan Heuristic:



Demo

http://qiao.github.io/PathFinding.js/visual/

97

SUGGESTED BY Fernando Centurion


