CSE 573: Artificial Intelligence

Search: Heuristics and Pattern DBs

Dan Weld

With slides from
Dan Weld, Dan Klein, Stuart Russell, Travis Mandel, Andrew Moore, Luke Zettlemoyer

Search thru a Problem Space / State Space

- Input:
- Set of states
- Operators [and costs]
- Start state
- Goal state [test]
- Output:
- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
- [Sometimes just need state passing test]

Search thru State Space

What if Robot is Blind?

Moving into wall \rightarrow noop

[Has a talking compass - knows which way is N]

Conformant Planning

Sterilizing surgical gear

Bowl feeder

Search thru State Space

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State
- Set of just goal state(s)

Soln: R, D, D, R, R, U, U

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Right

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Down

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Down

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Right

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Right

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Up

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Move Up

- States
- SETS of states
- "Belief state"
- Operators
- Move actions
- Initial State
- Set of all states
- Goal State

- Set of just goal states

Heuristics

It's what makes search actually work

Dominance

If $\quad h_{2}(n) \geq h_{1}(n)$ for all n (both admissible) then h_{2} dominates h_{1}
h_{2} is better - guaranteed never to expand more nodes.

State (x)

Admissable Heuristics

> - $f(x)=g(x)+h(x)$
> - $g:$ cost so far
> - h: underestimate of remaining costs
> Where do heuristics come from?

Relaxed Problems

Derive admissible heuristic from exact cost of a solution to a relaxed version of problem

Eg Manhattan distance - what is relaxed?
Cost of optimal soln to relaxed problem \leq cost of optimal soln for real problem

What's being relaxed?

Heuristic = Euclidean distance

Straight-line distance
to Bucharest
$\begin{array}{lr}\text { Arad } & 366 \\ \text { Bucharest } & 0\end{array}$
Craiova $\quad 160$
Dobreta 242
Eforie 161
Fagaras 176
Giurgiu 77
Hirsowa 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 390
Pitesti $\quad 10$
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni80

Vaslui 199
Zerind 374

- States
- SETS of states
- "Belief state"
- Goal State
- Set of just goal state(s)

Heuristics?

Relaxed Problem?

- What if it weren't blind?
- Max \# moves from any state in belief state

Also... (admissable?)

- Number of states in belief state

Heuristics for eight puzzle

7	2	3
5	1	6
8	3	

start

\rightarrow| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 4 | 5 | 6 |
| 7 | 8 | |

goal

- What can we relax?
h1 = number of tiles in wrong place h2 $=\Sigma$ distances of tiles from correct loc

Importance of Heuristics

h1 = number of tiles in wrong place

7	2	3
4	1	6
8	5	

D	IDS	$\mathrm{A} *(\mathrm{~h} 1)$
2	10	6
4	112	13
6	680	20
8	6384	39
10	47127	93
12	364404	227
14	3473941	539
18		3056
24		39135

Importance of Heuristics

 $\mathrm{h} 1=$ number of tiles in wrong place| 7 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 1 | 6 |
| 8 | 5 | | h2 $=\Sigma$ distances of tiles from correct loc

D	IDS	A* * h1)	A*(h2)
2	10	6	6
4	112	13	12
6	680	20	18
8	6384	39	25
10	47127	93	39
12	364404	227	73
14	3473941	539	113
18		3056	363
24		39135	1641

Decrease effective branching factor

Need More Power!

Performance of Manhattan Distance Heuristic

- 8 Puzzle
- 15 Puzzle
- 24 Puzzle
<1 second
1 minute
65000 years

Need even better heuristics!

