
CSE 573: Artificial Intelligence

Problem Spaces & Search

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer, Dana Nau…

Dan Weld

Logistics

§ Read Ch 3

§ Form 2-person teams.
§ Post on forum if you want a partner

§ Start PS1

Outline

§ Search Problems

§ Uninformed Search Methods
§ Depth-First Search
§ Breadth-First Search
§ Iterative Deepening Search
§ Uniform-Cost Search

§ Heuristic Search Methods
§ Heuristic Generation

Agent vs. Environment

§ An agent is an entity that
perceives and acts.

§ A rational agent selects
actions that maximize its
utility function.

§ Characteristics of the
percepts, environment,
and action space dictate
techniques for selecting
rational actions.

Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions

Goal Based Agents

§ Plan ahead
§ Ask “what if”

§ Decisions based on
(hypothesized)
consequences of actions

§ Must have a model of how
the world evolves in
response to actions

§ Act on how the world
WOULD BE

Search: It’s not just for Agents

11

Hardware verification
Planning optimal repair

sequences

Search thru a

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [or test]

• Path: start Þ a state satisfying goal test
[May require shortest path]
[Sometimes just need a state that passes test]

• Input:

• Output:

Problem Space (aka State Space)
Functions: States à States

Aka “Successor Function”

Example: Simplified Pac-Man
§ Input:

§ A state space

§ Successor function

§ A start state

§ A goal test

§ Output:

“N”, 1.0

“E”, 1.0

Ex: Route Planning: Arad à Bucharest

§ Input:
§ Set of states

§ Operators [and costs]

§ Start state

§ Goal state (test)

§ Output:

Different operators
may be applicable in
different states

Ex:	Dock	Worker	Robots
§ A harbor with several locations

§ e.g., docks, docked ships, storage areas, parking areas
§ Containers

§ going to/from ships
§ Robot vehicles

§ can move containers
§ Cranes

§ can load and
unload containers

Slide adapted from Dana Nau “Automated Planning”, licensed under creative commons NC share alike

§ Multiple robots can operate at the same time
§ Move, load & other actions have different durations

Dock Worker 2
Input:

§ Set of states

§ Operators [and costs]

§ Start state

§ Goal test

Partially specified plans

Plan modification operators

The null plan (no actions)

A plan which provably achieves the desired world configuration

Slide adapted from Dana Nau “Automated Planning”, licensed under creative commons NC share alike

Plan Space

18

Unload 1 A

Add
Action

Constrain
Ordering

Move B
Unload 1 A

Add
Action

Move BUnload 1 A <

Blue boxes are plans = states in search space
Operators modify plans
Successors(p) = all possible ways of modifying p

19

Multiple Problem
Spaces

Real World
States of the world (e.g. loading dock configurations)
Actions (take one world-state to another)

• Problem Space 1
• PS states =

• models of world states
• Operators =

• models of actions

Robot’s Head

• Problem Space 2
• PS states =

• partially spec. plan
• Operators =

• plan modificat’n ops

Algebraic Simplification

20

§ Input:
§ Set of states

§ Operators [and costs]

§ Start state

§ Goal state (test)

§ Output:

State Space Graphs
§ State space graph:

§ Each node is a state
§ The operators are repre-

sented by arcs
§ Edges may be labeled

with costs

§ We can rarely build this graph in
memory (so we don’t try)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

§ Search Problem:
Eat all of the food

§ Pacman positions:
10 x 12 = 120

§ Pacman facing:
up, down, left, right

§ Food configurations: 230

§ Ghost1 positions: 12
§ Ghost 2 positions: 11

10 x 12 = 120

up, down, left, right
230

12
11

120 x 4 x 230 x 12 x 11 = 6.8 x 1013

Search Methods
§ Blind Search

§ Local Search
§ Informed Search
§ Constraint Satisfaction
§ Adversary Search

• Depth first search
• Breadth first search
• Iterative deepening search
• Uniform cost search

Search Trees

§ A search tree:
§ Start state at the root node
§ Children correspond to successors
§ Nodes contain states, correspond to PLANS to those states
§ Edges are labeled with actions and costs
§ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

State graph:

What is the search tree?

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree denotes an
entire PATH in the
problem graph.

States vs. Nodes
§ Vertices in state space graphs are problem states

§ Represent an abstracted state of the world
§ Have successors, can be goal / non-goal, have multiple predecessors

§ Vertices in search trees (“Nodes”) are plans
§ Contain a problem state and one parent, a path length, a depth & a cost
§ Represent a plan (sequence of actions) which results in the node’s state
§ The same problem state may be achieved by multiple search tree nodes

Depth 5

Depth 6

Parent

Node

Search Tree Nodes
Problem States

Action

Building Search Trees

§ Search:
§ Expand out possible nodes (plans) in the tree
§ Maintain a fringe of unexpanded nodes
§ Try to expand as few nodes as possible

General Tree Search

Important ideas:
§ Fringe (leaves of tree)
§ Expansion (adding successors of a leaf)
§ Exploration strategy

which fringe node to expand next?

Detailed pseudocode is
in the book!

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

r
Strategy: expand
deepest node first

Implementation:
Fringe is a stack - LIFO

Review: Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand
shallowest node first

Implementation:
Fringe is a queue - FIFO

Review: Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Expansion order:
(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

Search Algorithm Properties

§ Complete? Guaranteed to find a solution if one exists?
§ Optimal? Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

Variables:

n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)
C* Cost of least cost solution
d Depth of the shallowest solution
m Max depth of the search tree

Depth-First Search

§ Infinite paths make DFS incomplete…
§ How can we fix this?
§ Check new nodes against path from S

Algorithm Complete Optimal Time Space
DFS Depth First

Search
N N AX) O(LMAX)

START

GOALa

b

No No O(bm) O(b m)

d depth of solution
m max depth of tree

DFS Search (w/ cycle checking)

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking Y if finite N

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

O(bm) O(b m)

Only if finite tree

BFS Tree Search
Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

N unless
finite

N O(bm) O(bm)

Y* Y* O(bd) O(bd)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

* Assuming finite branching factor

Memory a Limitation?
§ Suppose:

• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in … 3 min

39

§ DFS with limit; incrementally grow limit
§ Evaluation

Iterative Deepening Search

a

40

§ DFS Tree Search with limit; incrementally grow limit
§ Evaluation

Iterative Deepening Search

a b

c d

41

§ DFS Tree Search with limit; incrementally grow limit
§ Evaluation

§ Complete?

§ Time Complexity?

§ Space Complexity?

Iterative Deepening Search

a b e

c f d i

g h lkj

42

§ DFS with limit; incrementally grow limit
§ Evaluation

§ Complete?

§ Time Complexity?

§ Space Complexity?

Iterative Deepening Search

a b e

c d

Yes *

O(bd)

O(bd)

d

* Assuming branching factor is finite
Important Note: no cycle checking necessary!

43

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

10 1.2

25 1.08

100 1.02

of duplicates

Speed

8 Puzzle

2x2x2 Rubik’s
15 Puzzle

3x3x3 Rubik’s
24 Puzzle

105 .01 sec

106 .2 sec

1017 20k yrs

1020 574k yrs

1037 1023 yrs

BFS
Nodes Time

Iter. Deep.
Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?

8x

1Mx

Rubik has higher branch factor
15 puzzle has greater depth

Search Methods
§ Depth first search (DFS)
§ Breadth first search (BFS)
§ Iterative deepening depth-first search (IDS)

45

Search Methods
§ Depth first search (DFS)
§ Breadth first search (BFS)
§ Iterative deepening depth-first search (IDS)
§ Best first search
§ Uniform cost search (UCS)
§ Greedy search
§ A*
§ Iterative Deepening A* (IDA*)
§ Beam search
§ Hill climbing 46

Blind vs Heuristic Search

§ Costs on Actions

§ Heuristic Guidance

47

Costs on Actions

Objective: Path with smallest overall cost

START

GOAL

d

b

p q

c

e

h

a

f

r

2

9 2

81

8

2

3

1
4

4

15
1

3 2
2

Costs on Actions

What will BFS return?

START

GOAL

d

b

p q

c

e

h

a

f

r

2

9 2

81

8

2

3

1
4

4

15
1

3 2
2

… finds the shortest path in terms of number of transitions.
It does not find the least-cost path.

50

Best-First Search
§ Generalization of breadth-first search
§ Fringe = Priority queue of nodes to be explored
§ Cost function f(n) applied to each node

Tree vs Graph Search

In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search
§ Very simple fix: never expand a state type twice

Some Hints

§ On small problems
§ Graph search almost always better than tree search

§ Implement your closed list as a dict or set!

§ On many real problems
§ Storage space is a huge concern
§ Graph search impractical

55

Best-First Search
§ Generalization of breadth-first search
§ Fringe = Priority queue of nodes to be explored
§ Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add new children of node to queue

“expanding the node”

56

Old Friends
§ Breadth First =

§ Best First
§ with f(n) = depth(n)

§ Dijkstra’s Algorithm (Uniform cost) =
§ Best First
§ with f(n) = the sum of edge costs from start to n

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Best first, where
f(n) = “cost from start to n”

aka “Dijkstra’s Algorithm”

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expansion order:
S, p, d, b, e, a, r, f, e, G S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 1

15

1

2

Cost
contours

(not all shown)

2

Uniform Cost Search
Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

UCS

Y if finite N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/e) O(bC*/e)

…
b

C*/e tiers

C* = Optimal cost

e = Minimum cost of an action

Uniform Cost Issues
§ Remember: explores

increasing cost contours

§ The good: UCS is
complete and optimal!

§ The bad:
§ Explores options in every
“direction”

§ No information about goal
location Start Goal

…

c £ 3

c £ 2
c £ 1

Uniform Cost: Pac-Man
§ Cost of 1 for each action
§ Explores all of the states, but one

What is a Heuristic?
§ An estimate of how close a state is to a goal
§ Designed for a particular search problem

10

5
11.2

§ Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

What is a Heuristic?
§ An estimate of how close a state is to a goal
§ Designed for a particular search problem

10

§ Actual distance to goal: 2+4+2+1+8=

10

5

Greedy Search
Best first with f(n) = heuristic estimate of distance to goal

Greedy Search
Expand the node that seems closest…

What can go wrong?

B

A

start

goal

Greedy Search
§ Common case:

§ Best-first takes you straight
to a (suboptimal) goal

§ Worst-case: like a badly-
guided DFS
§ Can explore everything
§ Can get stuck in loops if no

cycle checking

§ Like DFS in completeness
§ Complete w/ cycle checking
§ If finite # states

…
b

…
b

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
§ g(n) = sum of costs from start to n
§ h(n) = estimate of lowest cost path n ® goal

h(goal) = 0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds…

