CSE 573: Artificial Intelligence

Problem Spaces & Search

Dan Weld

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer, Dana Nau...

Logistics

= Read Ch 3

* Form 2-person teams.
» Post on forum if you want a partner

= Start PS1

Outline

Search Problems

Uninformed Search Methods
= Depth-First Search

= Breadth-First Search

» [terative Deepening Search

» Uniform-Cost Search

Heuristic Search Methods
Heuristic Generation

Agent vs. Environment

= An agent is an entity that " Agent h
perceives and acts. Sensors .

Percepts

= A rational agent selects

actions that maximize its
utility function.

= (Characteristics of the ATl

JUSWUOJIAUT

Actions

percepts, environment,
and action space dictate N8 /
techniques for selecting

rational actions.

Goal Based Agents

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of actions

Must have a model of how
the world evolves in
response to actions

Act on how the world
WOULD BE

Search: It's not just for Agents

Planning optimal repair
sequences

Hardware verification

m- '
i HAERTTT i"f’m
| ; :

| Shared L3¢

|

11

Search thru a
Problem Space (aka State Space)

* Input: Functions: States - States

" Set of states Aka “Successor Function”

» Operators Sts]
= Start state
= Goal state [or test]

» Output:

« Path: start = a state satisfying goal test
[May require shortest path]
[Sometimes just need a state that passes test]

Example: Simplified Pac-Man

= |nput:
= A state space

= Successor function

13

", 1.0
— &
.

= A start state ‘B’ 1.0

= A goal test

= Qutput:

Ex: Route Planning: Arad - Bucharest

= |nput: W
= Set of states

Different operators
may be applicable in
different states

= Operators [and costs]
= Start state

» Goal state (test)

= Qutput:

Ex: Dock Worker Robots

= A harbor with several locations
* e.g., docks, docked ships, storage areas, parking areas

= Containers —7 il
= going to/from ships ‘ o
= Robot vehicles / L e of
O 0 00 —
= can move containers /L

= Cranes |
= can load and / jﬁogy

unload containers

= Multiple robots can operate at the same time
= Move, load & other actions have different durations

Slide adapted from Dana Nau “Automated Planning”, licensed under creative commons NC share alike

Dock Worker 2 g L ;m_

=

Input:
= Set of states

Partially specified plans
= Operators [and costs]

Plan modification operators

= Start state

The null plan (no actions)
= Goal test

A plan which provably achieves the desired world configuration

Slide adapted from Dana Nau “Automated Planning”, licensed under creative commons NC share alike

Plan Space

Unload 1 A /
= =
Move B

Add Add Constrain
Action Action Ordering

Blue boxes are plans = states in search space
Operators modify plans
Successors(p) = all possible ways of modifying p 18

Multiple Problem ﬂ@7
Spaces o

Real World =

States of the world (e.g. loading dock configurations)
Actions (take one world-state to another)

Robot's Head

* Problem Space 1

« PS states =
- models of world states
» Operators =

* Problem Space 2
- PS states =

- partially spec. plan
» Operators =
* models of actions

» plan modificat'n ops

Introducing

P Napouoiagoupe

nga
advan(edalqomhmswlth ralleled

= Input:
= Set of states

= Operators [and costs]
= Start state

» Goal state (test)

= Qutput:

&2
e~ 2 (Bf - 6,) u(8)

—2s | . 1s —1s ”_l -
€ lm (e 2 u(s)) 4u-

. le 3 (e-%su(s))":

1
v

,.-MATHEMATICAS Algebraic Simplification

_[E’ +1) rﬂ] u(r)

T'

— [E' =1 + 1)e™** — €*] u(s)

—[E’— (I+1)e” ’—ez] u(8)

_ [E’— (I + %)26—28 - eﬂs] u(s)
—e? [E’ - (1 + %)2 g2 — e“] v

20

State Space Graphs

= State space graph:
= Each node is a state

* The operators are repre-
sented by arcs

= Edges may be labeled
with costs

" We can rarely build this graph in o0 iousiy ting search graph
memory (so we don't try) for a tiny search problem

State Space Sizes?

= Search Problem:
Eat all of the food

= Pacman positions:
10x12=120

= Pacman facing:

up, down, left, right
» Food configurations: 230
= Ghost1 positions: 12

= Ghost 2 positions: 11

120 x4 x 239 x12x11 =6.8 x 1073

Search Methods

Blind Search

» Depth first search

» Breadth first search
 |terative deepening search
* Uniform cost search

Local Search
Informed Search
Constraint Satisfaction
Adversary Search

Search Trees

“N”, 1.0 ‘E”, 1.0
/ \

= A search tree:
» Start state at the root node
= Children correspond to successors
* Nodes contain states, correspond to PLANS to those states
» Edges are labeled with actions and costs
= For most problems, we can never actually build the whole tree

Example: Tree Search

State graph:

What is the search tree?

State Graphs vs. Search Trees

Each NODE in in the
search tree denotes an
entire PATH in the

problem graph.
S
-
d e p
) PN
We construct both b C e h r q
on demand — and | N N0
we construct as a a h r p q f
little as possible. N | N
p q f q C G
| AN ;

States vs. Nodes

= Vertices in state space graphs are problem states
» Represent an abstracted state of the world
» Have successors, can be goal / non-goal, have multiple predecessors
= Vertices in search trees (“Nodes”) are plans
= Contain a problem state and one parent, a path length, a depth & a cost

= Represent a plan (sequence of actions) which results in the node’s state
= The same problem state may be achieved by multiple search tree nodes

Search Tree Nodes

Parent
.. Depth 5

Problem States

Action

Node Depth 6

Building Search Trees

= Search:
» Expand out possible nodes (plans) in the tree
» Maintain a fringe of unexpanded nodes
» Try to expand as few nodes as possible

General Tree Search

function I'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Important ideas:

= Fringe (Ieaves of tree) Detailgd pseudocode is
. . in the book!

» Expansion (adding successors of a leaf)

= Exploration strategy

which fringe node to expand next?

Review: Depth First Search

Strategy: expand
deepest node first

Implementation:
Fringe is a stack - LIFO

Review: Depth First Search

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,rf,c,a,G)

Review: Breadth First Search

Strategy: expand
shallowest node first

Implementation:
Fringe is a queue - FIFO

Review: Breadth First Search

Expansion order:

(S,d,e,p,b,c,e h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

Search /@DN R @

-y @ 2o @
a h r p q f
o /N N
N p q f qQq ¢ G
AN |

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

Depth-First Search

ning finite L —

Algorithm

Complete

Optimal

Time

Space

DFS Depth First
Search

No

No

O(b™)

O(b m)

* Infinite paths make DFS incomplete..
= How can we fix this?
= Check new nodes against path from S

d depth of solution

m max depth of tree

(:0

DFS Search (w/ cycle checking)

1 node
b nodes
b2 nodes
m tiers <
b™ nodes
Algorithm Complete |[Optimal |Time Space
/ Path e
DFS | Checking | Yiffinite | N O(bm) O(b m)

Only if finite tree

BFS Tree Search

Algorithm Complete |Optimal |Time Space
/ Path "
DFS \Cl)vhec?king N #Qilteess N O(b) O(bm)
BFS Y* Y* O(b9) O(b9)
g 1 node
_ b nodes
d tiers < 02 nodes
_ bd nodes
b™ nodes

C

* Assuming finite branching factor

Memory a Limitation?

= Suppose:
+ 4 GHz CPU

+ 32 GB main memory
» 100 instructions / expansion
* 5 bytes / node

* 40 M expansions / sec
* Memory filled in ... 3 min

Iterative Deepening Search

= DFS with limit; incrementally grow limit
= Evaluation

39

Iterative Deepening Search

* DFS Tree Search with limit; incrementally grow limit
= Evaluation

40

Iterative Deepening Search

* DFS Tree Search with limit; incrementally grow limit
= Evaluation

= Complete?

b e
* Time Complexity? ;\

f .
@ 1
= Space Complexity? /@\ / \
0

®

41

Iterative Deepening Search

= DFS with limit; incrementally grow limit

= Evaluation
= Complete?

Yes * b e B
= Time Complexity? d
v

@
O(b9)
= Space Complexity? /@\ / \\

O O O O O
O(bd)

* Assuming branching factor is finite
Important Note: no cycle checking necessary!

42

Cost of lterative Deepening

b ratio ID to DFS
2 3
3 2
S 1.5
10 1.2
25 1.08
100 1.02

S peed Assuming 10M nodes/sec & sufficient memory

BFS Iter. Deep.
Nodes Time Nodes Time
8 Puzzle 105 .01 sec 105 .01 sec
2x2x2 Rubik's 196 2 gec 106 .2 sec

15 Puzzle 10" 6days 1wx 1017 20k yrs
3x3x3 Rubik’'s 10® 68kyrs 8 1020 574k yrs
24 Puzzle 1025 12B yrs 1037 1023 yrs

Why the difference?

Rubik has higher branch factor # of duplicates
15 puzzle has greater depth

Slide adapted from Richard Korf presentation

Search Methods

= Depth first search (DFS) 3//};%

Q
» Breadth first search (BFS) Ve,
» |[terative deepening depth-first search (IDS)

45

Search Methods

Depth first search (DFS)
Breadth first search (BFS)
Iterative deepening depth-first search (IDS)

Best first search

Uniform cost search (UCS) /\/@0/7%8
Greedy search Sarey
A*

Iterative Deepening A* (IDA*)

Beam search

Hill climbing

46

Blind vs Heuristic Search

= Costs on Actions

= Heuristic Guidance

47

Costs on Actions

Objective: Path with smallest overall cost

Costs on Actions

What will BFS return?

... finds the shortest path in terms of number of transitions.
It does not find the least-cost path.

Best-First Search

= Generalization of breadth-first search
* Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

50

Tree vs Graph Search

In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

d e p
PN |
b/m h r q
| @ ; /N L
a r
N @@/\
p q f q C G
| N |

q cC G a
|
a

Graph Search

= Very simple fix: never expand a state type twice

function GRAPH-SEARCH(problem. fringe) returns a solution, or failure

closed < an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do

if fringe is empty then return failure

node — REMOVE-FRON1 (f/'/'/u/:)

if GOAL-TEST(problem, STATE[node]) then return node

if S'l‘.—\'l‘l‘Z[lI()lill is not in closed then
add STATE[node] to closed {
fringe «— INSERTA LL(EXPAND(node, problem), fringe)

end

Some Hints

= On small problems
» Graph search almost always better than tree search

* Implement your closed list as a dict or set!

= On many real problems

» Storage space is a huge concern
» Graph search impractical

Best-First Search

= Generalization of breadth-first search
* Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add new children of node to queue

QXJOOWLC[ng l'ég TLOO[Q

Old Friends

= Breadth First =
= Best First
= with f(n) = depth(n)

= Dijkstra’s Algorithm (Uniform cost) =
= Best First

= with f(n) = the sum of edge costs from start to n

56

Uniform Cost Search

Best first, where
f(n) = “cost from start to n”

3

2

aka “Dijkstra’s Algorithm”

Uniform Cost Search

Expansion order:

S, p,d b, e alrnf e,

Cost

|
contours< @6 a @

(not all shown)

Uniform Cost Search

Algorithm Complete |Optimal [Time Space
DFS ¥ eeng | Yiffinite | N O(b") O(bm)
BFS Y Y* O(b9) O(bY)
UCS Y* Y O(bC™) O(bC™?)

C*/e tiers <

C* = Optimal cost

¢ = Minimum cost of an action

Uniform Cost Issues

= Remember: explores
Increasing cost contours

* The good: UCS is
complete and optimal!

* The bad:
= Explores options in every

“direction”
= No information about goal
location Goal

Uniform Cost: Pac-Man

= Cost of 1 for each action
= Explores all of the states, but one

What is a Heuristic”?

= An estimate of how close a state is to a goal
= Designed for a particular search problem

= Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

What is a Heuristic”?

= An estimate of how close a state is to a goal
= Designed for a particular search problem

= Actual distance to goal: 2+4+2+1+8=

Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

] Oradea

Neamt

Zerind 151

75
Arad [0
Sibiu g9 Fagaras
118 e -
80
Rimnicu Vilcea
- Timisoara -

211
1 ﬂ » Pitesti
% 85
J Mehadia N\

-
75 138 X,

120
Dobreta [90

M Craiova

Fucharest

] Giurgiu

87

] lasi
92
=] Vaslul
142
98
n ™ Hirsova
Urziceni
86
m
Eforie

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Glurgiu 77
Hirsova 151
lasi >
Lugo) @
Mehadia

Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199

Zerind 374

Greedy Search

Expand the node that seems closest...

B

goal

What can go wrong?

Greedy Search

= Common case:

= Best-first takes you straight
to a (suboptimal) goal

= Worst-case: like a badly-
guided DFS

= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
= Complete w/ cycle checking
= [ffinite # states

A* Search

Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)

= g(n) = sum of costs from start to n
= h(n) = estimate of lowest cost path n —» goal
h(goal) =0

Can view as cross-breed:
g(n) ~ uniform cost search
h(n) ~ greedy search

Best of both worlds...

