CSE 573 Spring 2014

Assignment 2: Knowledge and Reasoning

Turn in (1) zip file containing your code and README clearly stating how to run your code
and (2) text file titled “answers.txt” containing answers to the questions, via Catalyst Dropbox
by 11pm, May 7. Be sure to number your answers.

Create a Knowledge Base (40 points)

Problem 1. (21 points) Using the following predicates

ParentOf (A, B) (A is a parent of B)
AncestorOf (A, B) (A is an ancestor of B)
Siblings (A, B) (A is a sibling to B)
Cousins (A, B) (A is a cousin to B)

BloodRelated (A, B) (A is blood related to B)

Convert the following statements into first order logic. Write your answers in plain
text in “answers.txt” using &, |, ->, forall, and ! in place of v, A, =, V¥, and -. Each
statement is worth 3 points.

a) Someone’s parent is also their ancestor.

b) If afirst person is a sibling to a second person, then the second person is also a
sibling to the first person.

c) The ancestors of someone’s ancestors are also that person’s ancestors.

d) Iftwo people’s parents are siblings, then they are cousins.

e) Ifafirst person is a blood related to a second person, then the second person is
also blood related to the first person.

f) A person is blood related to their ancestors.

g) If aperson is blood-related to someone, then they are also blood-related to
people for whom that someone is an ancestor.

Problem 2. (13 points) Convert your knowledge base into conjunctive normal form
and then convert it into propositional logic using the following set of 5 ground terms:
Frank, Bob, Jill, Mary, Tom. Inaddition to the rules above, add to your
knowledge base the following assertions:

ParentOf (Jill, Frank)
ParentOf (Bob,Mary)
ParentOf (Tom, Bob)
ParentOf (Tom, Jill)
Siblings (Jill, Bob)

Save the result into a text file “knowledgebase.txt” using the following format:
* Each line of the text file is a clause
* Aclause is written as a sequence of literals each separated by a space
* Each literal is written as a proposition, which may or may not be proceeded
by a “” indicating negation
* A proposition is written as a string of characters which does not contain any
spaces

For example, the knowledge base BloodRelated (Frank, Jill) A ((BloodRel
ated (Tom, Jan)V —=Siblings (Tom, Jan)) would be written as

BloodRelated (Frank, Jill)
BloodRelated (Tom, Jan) !Siblings (Tom, Jan)

Note that your final knowledge base will have close to 1000 clauses, so you probably
don’t want to do this by hand. To help you out, we've provided a small amount of
Java code. You can download this code from the course website. This code provides
basic data structures for representing a knowledge base in CNF form and code for
reading and writing the format described above. We've also provided a function,
which expands a knowledge base by replacing variables with ground terms. See the
function named “propositionalize” in the file “Main.java” and read the code and
comments there to see how it works. You do not have to use this code, but you will
probably find it helpful.

Problem 3. (6 points) What about this knowledge base makes it easy to
propositionalize? What about this knowledge base makes it easy to run inference
on?

Implement and Test WalkSAT (60 points)

Problem 4. (30 points) Implement WalkSAT as it is written in the book (Figure

7.18). Your implementation should take in a knowledge base in the format

described above and two parameters p and maxFlips. At the minimum, it should

output true if the knowledge base is satisfiable or false otherwise. We suggest you

use the code we've provided as a starting point. We don’t require you use this code,
2

however. If you use a language other than Java, please contact the TA to be sure that
we will be able to read and run your code.

Problem 5. (10 points) WalkSAT, like any satisfiability solver, can be used for
inference. How can we do this? WalkSAT sometimes returns false even if the
knowledge base is in fact satisfiable. What sort of errors will WalkSAT sometimes
make when we use it for inference? Is it sound? Is it complete?

Problem 6. (10 points) Test your WalkSAT implementation by using it to answer
the following inference queries:

Cousins (Frank,Mary)
AncestorOf (Tom,Mary)
BloodRelated (Tom, Frank)
AncestorOf (Bob, Frank)
Cousins (Jill, Bob)

Use parameters p = .5 and maxF lips = 10000 and report back the results. Run each
inference multiple times. Does your implementation ever report back the wrong
answer on these queries using these parameters?

Problem 7. (10 points) Repeat the experiments above using different values of p
and maxFlips and report the results. What happens if you make maxFlips smaller or
larger? How sensitive is the algorithm to changes in p?

