

Supervised Learning (contd)

Linear Separation

Mausam

(based on slides by UW-AI faculty)

1

Images as Vectors
Binary handwritten characters

Greyscale images

Treat an image as a high-

dimensional vector
(e.g., by reading pixel values

left to right, top to bottom row)

N

N

p

p

p

p

2

2

1

I

Pixel value pi can be 0

or 1 (binary image) or

0 to 255 (greyscale)

2

The human brain is extremely
good at classifying images

Can we develop classification methods by
emulating the brain?

3

Human brain contains a
massively

interconnected net of
1010-1011 (10 billion)

neurons (cortical cells)

Biological Neuron

- The simple
“arithmetic
computing”

element

Brain Computer: What is it?

4

5

The schematic model
of a biological neuron

Synapses

Dendrites

Soma

Axon
Dendrite

from
other

Axon from
other neuron

1. Soma or body cell - is a large, round
central body in which almost all the logical
functions of the neuron are realized.

2. The axon (output), is a nerve fibre
attached to the soma which can serve as a
final output channel of the neuron. An axon
is usually highly branched.

3. The dendrites (inputs)- represent a highly
branching tree of fibres. These long
irregularly shaped nerve fibres (processes)

are attached to the soma.

4. Synapses are specialized contacts on a
neuron which are the termination points for
the axons from other neurons.

Biological Neurons

6

Neurons communicate via spikes

Inputs

Output spike

(electrical pulse)

Output spike roughly dependent on whether
sum of all inputs reaches a threshold

7

Neurons as “Threshold Units”

Artificial neuron:

• m binary inputs (-1 or 1), 1 output (-1 or 1)

• Synaptic weights wji

• Threshold i

Inputs uj

(-1 or +1)
Output vi

(-1 or +1)

Weighted Sum Threshold
w1i

(x) = 1 if x > 0 and -1 if x 0

)(ij

j

jii uwv

w2i

w3i

8

“Perceptrons” for Classification

Fancy name for a type of layered “feed-forward”
networks (no loops)

Uses artificial neurons (“units”) with binary inputs and
outputs

 Multilayer

Single-layer

9

Perceptrons and Classification

Consider a single-layer perceptron

• Weighted sum forms a linear hyperplane

• Everything on one side of this hyperplane is in
class 1 (output = +1) and everything on other
side is class 2 (output = -1)

Any function that is linearly separable can be
computed by a perceptron

0 ij

j

jiuw

10

Linear Separability

Example: AND is linearly separable

Linear hyperplane

v

u1 u2

 = 1.5
(1,1)

1

-1

1

-1
u1

u2 -1 -1 -1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 AND

v = 1 iff u1 + u2 – 1.5 > 0

Similarly for OR and NOT
11

How do we learn the appropriate
weights given only examples of

(input,output)?

Idea: Change the weights to decrease the error
in output

12

Perceptron Training Rule

13

What about the XOR function?

(1,1)

1

-1

1

-1
u1

u2
-1 -1 1

1 -1 -1

-1 1 -1

1 1 1

u1 u2 XOR

Can a perceptron separate the +1
outputs from the -1 outputs?

?

14

Linear Inseparability

Perceptron with threshold units fails if classification
task is not linearly separable

• Example: XOR

• No single line can separate the “yes” (+1)

 outputs from the “no” (-1) outputs!

Minsky and Papert’s book
showing such negative
results put a damper on
neural networks research
for over a decade!

(1,1)

1

-1

1

-1
u1

u2

X

15

How do we deal with linear
inseparability?

16

Idea 1: Multilayer Perceptrons

Removes limitations of single-layer networks

• Can solve XOR

Example: Two-layer perceptron that computes XOR

Output is +1 if and only if x + y – 2(x + y – 1.5) – 0.5 > 0

x y

17

x y

out

x

y

1

1

2

1 2

2

1

1

1 1

2

1

11

2

1

?

Multilayer Perceptron: What does it do?

18

x y

out

x

y

1

1

2

1 2

0
2

1
1 yx

0
2

1
1 yx

=-1

=1

2

1

1
1

xy
2

1
1

Multilayer Perceptron: What does it do?

19

x y

out

x

y

1

1

2

1 2

02 yx 02 yx

=-1

=-1 =1

=1

1

2

1

Multilayer Perceptron: What does it do?

20

x y

out

x

y

1

1

2

1 2

=-1

=-1 =1

=1

11

2

1
 -

2

1
 >0

Multilayer Perceptron: What does it do?

21

x y

out

x

y

1

1

2

1 2

02 yx

0
2

1
1 yx

=-1

=-1 =1

=1

2

1

1

1 1

2

1

11

2

1

Perceptrons as Constraint
Satisfaction Networks

22

 z z

Linear activation

Threshold activation Hyperbolic tangent activation

Logistic activation

u

u

e

e
utanhu

2

2

1

1

1

1 z
z

e

1, 0,

sign()
1, 0.

if z
z z

if z

z

z

z

z

1

-
1

1

0

0

Σ

1

-1

Artificial Neuron:
Most Popular Activation Functions

23

Neural Network Issues

• Multi-layer perceptrons can represent any function

• Training multi-layer perceptrons hard

• Backpropagation

• Early successes

• Keeping the car on the road

• Difficult to debug

• Opaque

24

Back to Linear Separability

• Recall: Weighted sum in perceptron
forms a linear hyperplane

• Due to threshold function, everything on
one side of this hyperplane is labeled as
class 1 (output = +1) and everything on
other side is labeled as class 2 (output = -1)

0 bxw i

i

i

25

Separating Hyperplane

 denotes +1 output

 denotes -1 output

Class 2

Need to choose w and b based on training data

0 bxw i

i

i

Class 1

26

Separating Hyperplanes

Different choices of w and b give different hyperplanes

(This and next few slides adapted from Andrew Moore’s)

 denotes +1 output

 denotes -1 output

Class 1

Class 2

27

http://www.cs.cmu.edu/~awm/tutorials

Which hyperplane is best?

 denotes +1 output

 denotes -1 output

Class 1

Class 2

28

How about the one right in the middle?

Intuitively, this boundary

seems good

Avoids misclassification of

new test points if they are

generated from the same

distribution as training points

29

Margin

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

30

Maximum Margin and Support Vector Machine

The maximum
margin classifier is
called a Support
Vector Machine (in
this case, a Linear
SVM or LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

31

Why Maximum Margin?

• Robust to small
perturbations of data
points near boundary

• There exists theory
showing this is best for
generalization to new
points

• Empirically works great

32

What if data is not linearly separable?

Outliers (due to noise)

33

Approach 1: Soft Margin SVMs

Allow errors ξ i (deviations from
margin)

Trade off margin with errors.

Minimize: margin + error-penalty

ξ

34

Not linearly separable

What if data is not linearly
separable: Other ideas?

36

Approach 2: Map original input space to higher-
dimensional feature space; use linear classifier in
higher-dim. space

x → φ(x)

What if data is not linearly separable?

Kernel: additional bias to convert into high d space 37

x → φ(x)

Problem with high dimensional spaces

Computation in high-dimensional feature space can be
costly

The high dimensional projection function φ(x) may be too
complicated to compute

Kernel trick to the rescue!
38

The Kernel Trick
Dual Formulation: SVM maximizes the quadratic
function:

Insight:

 The data points only appear as inner product

• No need to compute high-dimensional φ(x)
explicitly! Just replace inner product xixj with
a kernel function K(xi,xj) = φ(xi) φ(xj)

• E.g., Gaussian kernel

 K(xi,xj) = exp(-||xi-xj||2/22)

• E.g., Polynomial kernel

 K(xi,xj) = xixj+1)d

i

iii

ji

jijiji

i

i

y

yy

0 and 0 subject to

)(
2

1

,

 xx

39

K-Nearest Neighbors

A simple non-parametric classification algorithm

Idea:

• Look around you to see how your neighbors
classify data

• Classify a new data-point according to a majority
vote of your k nearest neighbors

41

Distance Metric

How do we measure what it means to be a neighbor
(what is “close”)?

Appropriate distance metric depends on the problem

Examples:

x discrete (e.g., strings): Hamming distance
 d(x1,x2) = # features on which x1 and x2 differ

x continuous (e.g., vectors over reals): Euclidean
distance

 d(x1,x2) = || x1-x2 || = square root of sum of squared
differences between corresponding elements of data vectors

42

Example
Input Data: 2-D points (x1,x2)

Two classes: C1 and C2. New Data Point +

K = 4: Look at 4 nearest neighbors of +
3 are in C1, so classify + as C1

43

Decision Boundary using K-NN

 Some points
near the
boundary may
be misclassified

(but maybe noise)

44

What if we want to learn
continuous-valued functions?

Input

Output

45

Regression

K-Nearest neighbor

 take the average of k-close by points

Linear/Non-linear Regression

 fit parameters (gradient descent)
 minimizing the regression error/loss

Neural Networks

 remove the threshold function

46

Large Feature Spaces

Easy to overfit

Regularization

 add penalty for large weights

 prefer weights that are zero or close to zero

 minimize

 regression error + C.regularization penalty

47

Regularizations

L1 : diamond

L2 : circle

Derivatives

L1 : constant

L2 : high for large weights

L1 harder to optimize, but not too hard.

 - discontinuous but convex

48

L1 vs. L2

49

