
 

Supervised Learning (contd) 

Linear Separation 

Mausam 

(based on slides by UW-AI faculty) 
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Images as Vectors 
Binary handwritten characters 

Greyscale images 

Treat an image as a high-

dimensional vector  
(e.g., by reading pixel values 

left to right, top to bottom row) 
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Pixel value pi can be 0 

or 1 (binary image) or 

0 to 255 (greyscale) 
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The human brain is extremely 
good at classifying images 

Can we develop classification methods by 
emulating the brain? 
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Human brain contains a 
massively 

interconnected net of 
1010-1011  (10 billion) 

neurons  (cortical cells) 

Biological  Neuron 

- The simple 
“arithmetic   
computing” 

element 

Brain Computer: What is it? 
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The  schematic model 
of a biological neuron 

Synapses 

Dendrites 

Soma 

Axon 
Dendrite 

from 
other 

Axon from 
other neuron 

1. Soma or body cell  - is a large, round 
central body in which almost all the logical 
functions of the neuron are realized. 

2. The axon (output), is a nerve fibre 
attached to the soma which can serve as a 
final output channel of the neuron. An axon 
is usually highly branched. 

3. The dendrites (inputs)- represent a highly 
branching tree of fibres. These long 
irregularly shaped nerve fibres (processes) 

are attached to the soma.   

4. Synapses are specialized contacts on a 
neuron which are the termination points for 
the axons from other neurons.  

Biological Neurons 
 

6 



Neurons communicate via spikes 

 
Inputs 

Output spike 

(electrical pulse) 

Output spike roughly dependent on whether 
sum of all inputs reaches a threshold 
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Neurons as “Threshold Units” 

Artificial neuron: 

• m binary inputs (-1 or 1), 1 output (-1 or 1) 

• Synaptic weights wji 

• Threshold i 

Inputs uj 

(-1 or +1) 
Output vi 

(-1 or +1) 

Weighted Sum Threshold 
w1i 

(x) = 1 if x > 0 and -1 if x  0 

)( ij

j

jii uwv  

w2i 

w3i 

8 



“Perceptrons” for Classification 

Fancy name for a type of layered “feed-forward” 
networks (no loops) 

Uses artificial neurons (“units”) with binary inputs and 
outputs 

 

 Multilayer 

Single-layer 
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Perceptrons and Classification 

Consider a single-layer perceptron 

• Weighted sum forms a linear hyperplane 

 

 

 

• Everything on one side of this hyperplane is in 
class 1 (output = +1) and everything on other 
side is class 2 (output = -1) 

Any function that is linearly separable can be 
computed by a perceptron 

0 ij

j

jiuw 
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Linear Separability 

Example: AND is linearly separable 
 

Linear hyperplane 

v 

u1 u2 

 = 1.5 
(1,1) 

1 

-1 

1 

-1 
u1 

u2 -1 -1 -1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 AND 

v = 1 iff u1 + u2 – 1.5 > 0 

Similarly for OR and NOT 
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How do we learn the appropriate 
weights given only examples of 

(input,output)? 

Idea: Change the weights to decrease the error 
in output 
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Perceptron Training Rule 
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What about the XOR function? 

(1,1) 

1 

-1 

1 

-1 
u1 

u2 
-1 -1 1 

1 -1 -1 

-1 1 -1 

1 1 1 

u1 u2 XOR 

Can a perceptron separate the +1 
outputs from the -1 outputs? 

? 
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Linear Inseparability 

Perceptron with threshold units fails if classification 
task is not linearly separable 

• Example: XOR 

• No single line can separate the “yes” (+1) 

 outputs from the “no” (-1) outputs! 

Minsky and Papert’s book 
showing such negative 
results put a damper on 
neural networks research 
for over a decade! 

(1,1) 

1 

-1 

1 

-1 
u1 

u2 

X 
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How do we deal with linear 
inseparability? 
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Idea 1: Multilayer Perceptrons 

Removes limitations of single-layer networks 

• Can solve XOR 

Example: Two-layer perceptron that computes XOR 

 

 

 

 

 

 

 

 

Output is +1 if and only if x + y – 2(x + y – 1.5) – 0.5 > 0 

 

x y 
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? 

Multilayer Perceptron: What does it do? 
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Multilayer Perceptron: What does it do? 
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Multilayer Perceptron: What does it do? 
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Multilayer Perceptron: What does it do? 
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Perceptrons as Constraint 
Satisfaction Networks 

22 



 z z 

Linear activation 

Threshold activation Hyperbolic tangent activation 

Logistic  activation 

   
u

u

e

e
utanhu






2

2

1

1









 
1

1 z
z

e 







 
1, 0,

sign( )
1, 0.

if z
z z

if z



  

 

z 

z 

z 

z 

1 

-
1 

1 

0 

0 

Σ 

1 

-1 

Artificial Neuron: 
Most Popular Activation Functions 
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Neural Network Issues 
 

• Multi-layer perceptrons can represent any function 

• Training multi-layer perceptrons hard 

• Backpropagation 

 

• Early successes 

• Keeping the car on the road 

 

• Difficult to debug 

• Opaque 
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Back to Linear Separability 
 

• Recall: Weighted sum in perceptron 
forms a linear hyperplane 

 

 

 

• Due to threshold function, everything on 
one side of this hyperplane is labeled as 
class 1 (output = +1) and everything on 
other side is labeled as class 2 (output = -1) 

 

0 bxw i

i

i
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Separating Hyperplane 

   denotes +1 output  

   denotes -1 output 

Class 2 

Need to choose w and b based on training data 

0 bxw i

i

i

Class 1 
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Separating Hyperplanes 

Different choices of w and b give different hyperplanes 

(This and next few slides adapted from Andrew Moore’s) 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 
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Which hyperplane is best? 

   denotes +1 output  

   denotes -1 output 

Class 1 

Class 2 
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How about the one right in the middle? 

Intuitively, this boundary 

seems good  
 

Avoids misclassification of 

new test points if they are 

generated from the same 

distribution as training points 
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Margin 

Define the margin 
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint. 
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Maximum Margin and Support Vector Machine 

The maximum 
margin classifier is 
called a Support 
Vector Machine (in 
this case, a Linear 
SVM or LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 
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Why Maximum Margin? 

• Robust to small 
perturbations of data 
points near boundary 

• There exists theory 
showing this is best for 
generalization to new 
points  

• Empirically works great 
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What if data is not linearly separable? 

Outliers (due to noise) 
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Approach 1: Soft Margin SVMs 

Allow errors  ξ i (deviations from 
margin) 

 

Trade off margin with errors. 

Minimize: margin + error-penalty 

ξ 
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Not linearly separable 

What if data is not linearly 
separable: Other ideas? 
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Approach 2:   Map original input space to higher-
dimensional feature space; use linear classifier in 
higher-dim. space 

x → φ(x) 

What if data is not linearly separable? 

Kernel: additional bias to convert into high d space 37 



x → φ(x) 

Problem with high dimensional spaces 

Computation in high-dimensional feature space can be 
costly 

The high dimensional projection function φ(x) may be too 
complicated to compute  

Kernel trick to the rescue! 
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The Kernel Trick 
Dual Formulation: SVM maximizes the quadratic 
function: 

 

 

 

Insight:  

    The data points only appear as inner product 

• No need to compute high-dimensional φ(x) 
explicitly!  Just replace inner product xixj with 
a kernel function K(xi,xj) = φ(xi)  φ(xj) 

• E.g., Gaussian kernel  

  K(xi,xj) =  exp(-||xi-xj||2/22) 

• E.g., Polynomial kernel  

  K(xi,xj) = xixj+1)d 
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K-Nearest Neighbors  

A simple non-parametric classification algorithm 

Idea:  

• Look around you to see how your neighbors 
classify data 

• Classify a new data-point according to a majority 
vote of your k nearest neighbors 
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Distance Metric 

How do we measure what it means to be a neighbor 
(what is “close”)? 

Appropriate distance metric depends on the problem 

Examples: 

x discrete (e.g., strings): Hamming distance 
 d(x1,x2) = # features on which x1 and x2 differ 

x continuous (e.g., vectors over reals): Euclidean 
distance  

 d(x1,x2) = || x1-x2 || = square root of sum of squared 
differences between corresponding elements of data vectors 
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Example 
Input Data: 2-D points (x1,x2) 

Two classes: C1 and C2.     New Data Point + 

K = 4: Look at 4 nearest neighbors of + 
3 are in C1, so classify + as C1 
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Decision Boundary using K-NN 

 Some points 
near the 
boundary may 
be misclassified 

(but maybe noise) 
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What if we want to learn 
continuous-valued functions? 

Input 

Output 
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Regression 

K-Nearest neighbor 

 take the average of k-close by points 

 

Linear/Non-linear Regression 

 fit parameters (gradient descent)  
 minimizing the regression error/loss 

 

Neural Networks 

 remove the threshold function 
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Large Feature Spaces 

Easy to overfit 

 

Regularization 

 add penalty for large weights 

 prefer weights that are zero or close to zero 

 

 minimize  

  regression error + C.regularization penalty 

47 



Regularizations 

L1 : diamond 

L2 : circle 

 

Derivatives 

L1 : constant 

L2 : high for large weights 

 

L1 harder to optimize, but not too hard. 

 - discontinuous but convex 

48 



L1 vs. L2 
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