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Terms vs tokens 

• Terms are what results after tokenization 

and linguistic processing. 

– Examples 

• knowledge -> knowledg 

• The -> the 

• Removal of stop words 



Matching/Ranking of Textual 

Documents 

Major Categories of Methods 

1. Exact matching (Boolean)  

2. Ranking by similarity to query (vector space model) 

3. Ranking of matches by importance of documents 

(PageRank) 

4. Combination methods 

What happens in major search engines (Googlerank) 



Vector representation of documents and queries 

Why do this? 

• Represents a large space for documents 

• Compare  

– Documents 

– Documents with queries 

• Retrieve and rank documents with regards to a 
specific query 

- Enables methods of similarity 

All search engines do this. 



Boolean queries 

• Document is relevant to a query of the 
query itself is in the document. 

– Query blue and red brings back all documents 
with blue and red in them 

• Document is either relevant or not relevant 
to the query. 

• What about relevance ranking – partial 
relevance. Vector model deals with this. 



Similarity Measures and Relevance 

• Retrieve the most similar documents to a 

query 

• Equate similarity to relevance 

– Most similar are the most relevant 

• This measure is one of “text similarity” 

– The matching of text or words 



 Similarity Ranking Methods 

Query Documents Index 

database 

Mechanism for determining the similarity 

of the query to the document. 

Set of documents 

ranked by how similar 

they are to the query 



Term Similarity: Example 

Problem:  Given two text documents, how similar are they? 

[Methods that measure similarity do not assume exact 

matches.] 

Example (assume tokens converted to terms) 

Here are three documents.  How similar are they? 

 d1  ant ant bee 

 d2  dog bee dog hog dog ant dog 

 d3  cat gnu dog eel fox 

Documents can be any length from one word to thousands.  

A query is a special type of document. 

 



Bag of words view of a doc 

Tokens are extracted from text and thrown 
into a “bag” without order and labeled by 
document. 

 

• Thus the doc 

– John is quicker than Mary. 

is indistinguishable from the doc 

– Mary is quicker than John. 

is 

John 

quicker 

Mary 

than 



Two documents are similar if they contain some of the same 

terms. 

Possible measures of similarity might take into consideration: 

 (a)  The lengths of the documents 

 (b)  The number of terms in common 

 (c)  Whether the terms are common or unusual 

 (d)  How many times each term appears 

Term Similarity: Basic Concept 



TERM VECTOR SPACE 
Term vector space 

n-dimensional space, where n is the number of different 

terms/tokens used to index a set of documents. 

Vector 

Document i, di, represented by a vector.  Its magnitude in 

dimension j is wij, where:  

            wij > 0            if term j occurs in document i 

 wij = 0            otherwise  

wij is the weight of term j in document i.  



A Document Represented in a  

3-Dimensional Term Vector Space 
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d1 
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Basic Method: Incidence Matrix  

(Binary Weighting) 

document text terms 

d1 ant ant bee  ant bee 

d2 dog bee dog hog dog ant dog ant bee dog hog 

d3 cat gnu dog eel fox  cat dog eel fox gnu 

            ant   bee   cat   dog   eel   fox   gnu   hog             

d1          1      1                                                                  

d2          1      1              1                                 1                

d3                          1      1      1       1       1                         
 

               
Weights: tij = 1 if document i contains term j and zero otherwise 

3 vectors in  

8-dimensional 

term vector 

space 



Basic Vector Space Methods: Similarity 

between 2 documents 

The similarity between 

two documents is a 

function of the angle 

between their vectors in 

the term vector space. 

t1 

t2 

t3 

d1 d2 

 



Vector Space Revision 
x = (x1, x2, x3, ..., xn) is a vector in an n-dimensional vector space 

Length of x is given by (extension of Pythagoras's theorem) 

               |x|2  = x1
2 + x2

2 + x3
2 + ... + xn

2   

   |x|  = ( x1
2 + x2

2 + x3
2 + ... + xn

2 )1/2 

If x1 and x2 are vectors: 

Inner product (or dot product) is given by 

    x1.x2 = x11x21 + x12x22 + x13x23 + ... + x1nx2n 

Cosine of the angle between the vectors x1 and x2: 

                      cos () =   
  x1.x2  

|x1| |x2| 



Document similarity 
d = (x1, x2, x3, ..., xn) is a vector in an n-dimensional vector space 

Length of x is given by (extension of Pythagoras's theorem) 

               |d|2  = x1
2 + x2

2 + x3
2 + ... + xn

2   

   |d|  = ( x1
2 + x2

2 + x3
2 + ... + xn

2 )1/2 

If d1 and d2 are document vectors: 

Inner product (or dot product) is given by 

    d1.d2 = x11x21 + x12x22 + x13x23 + ... + x1nx2n 

Cosine angle between the docs d1 and d2 determines doc similarity 

                      cos () =   
  d1.d2   

|d1| |d2| 

cos () = 1; documents exactly the same; = 0, totally different 



Example 1  

No Weighting 

            ant   bee   cat   dog   eel   fox   gnu   hog          length   

d1          1      1                                                                  2 

d2          1      1              1                                 1               4 

d3                          1      1      1       1       1                        5 

 

               

Ex: length d1 = (12+12)1/2 



Example 1 (continued) 

 d1 d2 d3 

d1      1 0.71      0 

d2 0.71      1 0.22 

d3 0 0.22      1 

Similarity of documents in example: 



Digression: terminology 

• WARNING: In a lot of IR literature, 
“frequency” is used to mean “count” 

– Thus term frequency in IR literature is used to 
mean number of occurrences in a doc 

– Not divided by document length (which would 
actually make it a frequency) 

• We will conform to this misnomer 

– In saying term frequency we mean the number 
of occurrences of a term in a document. 



Example 2 

Weighting by Term Frequency (tf) 

 ant   bee   cat   dog   eel   fox   gnu   hog          length   

d1         2      1                                                                  5 

d2         1      1              4                                 1               19 

d3                         1      1      1       1       1                        5 

Weights: tij = frequency that term j occurs in document i  

document text terms 

d1 ant ant bee  ant bee 

d2 dog bee dog hog dog ant dog ant bee dog hog 

d3 cat gnu dog eel fox  cat dog eel fox gnu 



Example 2 (continued) 

 d1 d2 d3 

d1      1 0.31      0 

d2 0.31      1 0.41 

d3 0 0.41      1 

Similarity of documents in example: 

Similarity depends upon the weights given to the terms. 

[Note differences in results from Example 1.] 



Summary: Vector Similarity 

Computation with Weights 

Documents in a collection are assigned terms from a set of n terms 

The term vector space W is defined as: 

    if term k does not occur in document di, wik = 0  

    if term k occurs in document di, wik is greater than zero  

        (wik is called the weight of term k in document di) 

Similarity between di and dj is defined as:  

                              wikwjk  

                             |di| |dj| 

Where di and dj are the corresponding weighted term vectors and 

|di| is the length of the document vector di 

k=1 

n 

cos(di, dj) = 



Summary: Vector Similarity 

Computation with Weights 

Inner product (or dot product) between documents  

 

    d1.d2 = w11w21 + w12w22 + w13w23 + ... + w1nw2n 

 

Inner product (or dot product) is between a document and query 

 

    d1.q1 = w11wq11 + w12wq12 + w13wq13 + ... + w1nwq1n 

 

 where wqij is the weight of the jth term of the ith query 

 



Simple Uses of Vector Similarity 

in Information Retrieval  
Threshold 

For query q, retrieve all documents with similarity 

above a threshold, e.g., similarity > 0.50. 

Ranking 

For query q, return the n most similar documents ranked 

in order of similarity. 

[This is the standard practice.] 

 



Simple Example of Ranking 

(Weighting by Term Frequency) 

 ant   bee   cat   dog   eel   fox   gnu   hog          length   

q          1                       1                                                 √2 

d1         2      1                                                                  5 

d2         1      1              4                                 1               19 

d3                         1      1      1       1       1                        5 

query  

q ant dog 

document text terms 

d1 ant ant bee  ant bee 

d2 dog bee dog hog dog ant dog ant bee dog hog 

d3 cat gnu dog eel fox  cat dog eel fox gnu 



Calculate Ranking 

 d1 d2 d3 

q        2/√10    5/√38  1/√10 

          0.63       0.81       0.32 

Similarity of query to documents in example: 

If the query q is searched against this 

document set, the ranked results are: 

         d2, d1, d3 



Bigger Corpora 

• Consider  

– n = 1M documents,  

– each with about 1K terms. 

 

• Avg 6 bytes/term incl spaces/punctuation  

– 6GB of data. 

• Say there are m = 500K distinct terms…. 



Can’t Build the Matrix 

• 500K x 1M matrix: 500 Billion 0’s and 1’s. 

 

• But it has no more than 1 billion 1’s. 

– matrix is extremely sparse. 

• What’s a better representation? 



Documents are parsed to extract  

words and these are saved with the 

document ID. 

I did enact Julius 

Caesar I was  

killed i' the  

Capitol; Brutus  

killed me. 

Doc 1 

So let it be with 

Caesar. The  

Noble Brutus hath  

told you Caesar  

was ambitious 

Doc 2 

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious2

Inverted index 



  

Later, sort inverted file by terms  

Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

Term Doc #

I 1

did 1

enact 1

julius 1

caesar 1

I 1

was 1

killed 1

i' 1

the 1

capitol 1

brutus 1

killed 1

me 1

so 2

let 2

it 2

be 2

with 2

caesar 2

the 2

noble 2

brutus 2

hath 2

told 2

you 2

caesar 2

was 2

ambitious 2



• Multiple term 

entries in a single 

document are 

merged and 

frequency 

information added 

Term Doc # Freq

ambitious 2 1

be 2 1

brutus 1 1

brutus 2 1

capitol 1 1

caesar 1 1

caesar 2 2

did 1 1

enact 1 1

hath 2 1

I 1 2

i' 1 1

it 2 1

julius 1 1

killed 1 2

let 2 1

me 1 1

noble 2 1

so 2 1

the 1 1

the 2 1

told 2 1

you 2 1

was 1 1

was 2 1

with 2 1

  
Term Doc #

ambitious 2

be 2

brutus 1

brutus 2

capitol 1

caesar 1

caesar 2

caesar 2

did 1

enact 1

hath 1

I 1

I 1

i' 1

it 2

julius 1

killed 1

killed 1

let 2

me 1

noble 2

so 2

the 1

the 2

told 2

you 2

was 1

was 2

with 2



Best Choice of Weights? 

 ant   bee   cat   dog   eel   fox   gnu   hog             

q          ?                       ?                                                  

d1         ?      ?                                                                   

d2         ?      ?              ?                                 ?                

d3                         ?      ?      ?       ?       ?                         

query  

q ant dog 

document text terms 

d1 ant ant bee  ant bee 

d2 dog bee dog hog dog ant dog ant bee dog hog 

d3 cat gnu dog eel fox  cat dog eel fox gnu 

What 

weights lead 

to the best 

information 

retrieval? 



Weighting 

Term Frequency (tf) 
Suppose term j appears fij times in document i. What 

weighting should be given to a term j? 

Term Frequency: Concept 

A term that appears many times within a document is 

likely to be more important than a term that appears 

only once. 



Term Frequency: Free-text 

Document 

Length of document 

Simple method is to use wij as the term frequency. 

...but, in free-text documents, terms are likely to 

appear more often in long documents.  Therefore wij 

should be scaled by some variable related to document 

length. 

i 



Term Frequency: Free-text Document 
A standard method for free-text documents 

Scale  fij relative to the frequency of other terms in the 

document.  This partially corrects for variations in the 

length of the documents. 

Let mi = max (fij)  i.e., mi is the maximum frequency of 

any term in document i. 

Term frequency (tf): 

 tfij = fij / mi                 when fij > 0 

Note:  There is no special justification for taking this 

form of term frequency except that it works well in 

practice and is easy to calculate. 

i 



Weighting 

Inverse Document Frequency (idf) 
Suppose term j appears fij times in document i. What 

weighting should be given to a term j? 

Inverse Document Frequency: Concept 

A term that occurs in a few documents is likely to be a 

better discriminator than a term that appears in most or 

all documents. 



Inverse Document Frequency 
Suppose there are n documents and that the number of 

documents in which term j occurs is nj. 

A possible method might be to use n/nj as the inverse 

document frequency. 

A standard method 

The simple method over-emphasizes small differences.  

Therefore use a logarithm.  

Inverse document frequency (idf): 

 idfj = log2 (n/nj) + 1               nj > 0 

Note:  There is no special justification for taking this form 

of inverse document frequency except that it works well in 

practice and is easy to calculate. 



Example of Inverse Document 

Frequency 
Example 

 n = 1,000 documents; nj # of docs term appears in 

 

 term j nj  idfj  

     A 100 4.32 

     B 500 2.00 

     C 900 1.13 

     D 1,000 1.00 

From: Salton and McGill 
idfj modifies only the columns not 

the rows! 



Full Weighting:  

A Standard Form of tf.idf 

Practical experience has demonstrated that weights of the following 

form perform well in a wide variety of circumstances: 

(weight of term j in document i)  

 = (term frequency) * (inverse document frequency) 

A standard tf.idf weighting scheme, for free text documents, is: 

 tij = tfij * idfj 

         = (fij / mi) * (log2 (n/nj) + 1)     when nj > 0 

 



Discussion of Similarity 

The choice of similarity measure is widely used and works  

well on a wide range of documents, but has no theoretical  

basis. 

1. There are several possible measures other that angle 

between vectors 

2. There is a choice of possible definitions of tf and idf 

3. With fielded searching, there are various ways to adjust the 

weight given to each field. 



Similarity Measures Compared 
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Dice’s Coefficient 

 

 

Jaccard’s Coefficient 

 

 

Cosine Coefficient (what we studied) 

 

 

Overlap Coefficient 



Similarity Measures 

• A similarity measure is a function which computes the degree of 

similarity between a pair of vectors or documents 

– since queries and documents are both vectors, a similarity measure 

can represent the similarity between two documents, two queries, or 

one document and one query 

• There are a large number of similarity measures proposed in the 

literature, because the best similarity measure doesn't exist (yet!) 

• With similarity measure between query and documents 

– it is possible to rank the retrieved documents in the order of 

presumed importance 

– it is possible to enforce certain threshold so that the size of the 

retrieved set can be controlled 

– the results can be used to reformulate the original query  in  

relevance feedback (e.g., combining a document vector with the 

query vector)  



Problems 

• Synonyms: separate words that have the 
same meaning. 
– E.g. ‘car’ & ‘automobile’ 

– They tend to reduce recall 

• Polysems: words with multiple meanings 
– E.g. ‘Java’ 

– They tend to reduce precision 

 The problem is more general: there is a 
disconnect between topics and words 



• ‘… a more appropriate model should consider some 

conceptual dimensions instead of words.’ 

(Gardenfors)  

 



Latent Semantic Analysis (LSA) 

• LSA aims to discover something about the meaning 

behind the words; about the topics in the documents. 

• What is the difference between topics and words? 

– Words are observable 

– Topics are not. They are latent.  

• How to find out topics from the words in an automatic 

way? 

– We can imagine them as a compression of words 

– A combination of words 

– Try to formalise this 



Latent Semantic Analysis 
• Singular Value Decomposition (SVD) 

 

 

 

 A(m*n) = U(m*r) E(r*r) V(r*n) 

 

 Keep only k eigen values from E  

 A(m*n) = U(m*k) E(k*k) V(k*n) 

  

  Convert terms and documents to points in k-
dimensional space 

 



• Singular Value Decomposition 

{A}={U}{S}{V}T 

• Dimension Reduction 

{~A}~={~U}{~S}{~V}T 

Latent Semantic Analysis 



Latent Semantic Analysis 

• LSA puts documents together even if they  

don’t have common words if 

– The docs share frequently co-occurring terms 

 

•  Disadvantages: 

– Statistical foundation is missing 

 

 

      PLSA addresses this concern! 

 



PLSA 

• Generative Model 

– Select a doc with probability P(d) 

– Pick a latent class z with probability P(z|d) 

– Generate a word w with probability p(w|z)  

d z w 
P(d) P(z|d) P(w|z) 

 Latent Variable model for general co-occurrence data 

 Associate each observation (w,d) with a class variable z Є 

Z{z_1,…,z_K} 



PLSA 

• To get the joint probability model 

 



Model fitting with EM 

• We have the equation for log-likelihood 

function from the aspect model, and we 

need to maximize it. 

 

 

• Expectation Maximization ( EM) is used for 

this purpose 



EM Steps 

• E-Step 

– Expectation step where expectation of the 

likelihood function is calculated with the 

current parameter values 

• M-Step 

– Update the parameters with the calculated 

posterior probabilities 

– Find the parameters that maximizes the 

likelihood function  

 

 



E Step 

• It is the probability that a word w occurring 

in a document d, is explained by aspect z 

 

 

 

 

(based on some calculations) 



M Step 

• All these equations use p(z|d,w) calculated in E 

Step 

 

 

 

 

 

• Converges to local maximum of the likelihood 

function 



 



The performance of a retrieval system based on this model (PLSI) 

was found superior to that of both the vector space based similarity 

(cos) and a non-probabilistic latent semantic indexing (LSI) method. 

(We skip details here.) 

From Th. Hofmann, 2000 



Comparing PLSA and LSA 

• LSA and PLSA perform dimensionality reduction 
– In LSA, by keeping only K singular values 

– In PLSA, by having K aspects 

• Comparison to SVD 
– U Matrix related to P(d|z) (doc to aspect) 

– V Matrix related to P(z|w) (aspect to term) 

– E Matrix related to P(z)   (aspect strength) 

• The main difference is the way the approximation is done 
– PLSA generates a model (aspect model) and maximizes its 

predictive power 

– Selecting the proper value of K is heuristic in LSA 

– Model selection in statistics can determine optimal K in PLSA 


