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Linear Regression 

 y is continuous 
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Logistic Regression Model 

 The log-ratio of positive class to negative class 

 

 

 

 Results 

 

( 1| )
log

( 1| )

p y x
x w c

p y x


  

 

( 1| )
exp( )

( 1| )

 ( 1| ) ( 1| ) 1

p y x
x w c

p y x

p y x p y x


  

 

    

1
( 1| )

1 exp( ) 1
 ( | )

1 1 exp ( )
( 1| )

1 exp( )

 

p y x
x w c

p y x
y x w c

p y x
x w c


      

 
      

    



Logistic Regression Model 

 The log-ratio of positive class to negative class 
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Logistic Regression Model 

 Assume the inputs and outputs are related in the log 

linear function 

 

 

 

 Estimate weights: MLE approach  
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Example 1: Heart Disease 

•  Input feature x: age group id 

• output y: having heart disease or not 

• +1: having heart disease 

• -1: no heart disease 

1: 25-29 

2: 30-34 

3: 35-39 

4: 40-44 

5: 45-49 

6: 50-54 

7: 55-59 

8: 60-64 
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Example 1: Heart Disease 
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• Logistic regression model 

 

 

 

• Learning w and c: MLE approach 

 

 

 

 

• Numerical optimization: w = 0.58, c = -3.34 
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Example 1: Heart Disease 

 W = 0.58 

 An old person is more likely to 

have heart disease 

 C = -3.34 

 xw+c < 0  p(+|x) < p(-|x) 

 xw+c > 0  p(+|x) > p(-|x) 

 xw+c = 0  decision boundary 

 x* = 5.78  53 year old 
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Example: Text Classification 

 Learn to classify text into predefined categories 

 Input x: a document 

 Represented by a vector of words 

 Example: {(president, 10), (bush, 2), (election, 5), …} 

 Output y: if the document is politics or not 

 +1 for political document, -1 for not political document 

 Training data: 
    1 2 1 2 , ,..., ; , ,...,n n

N n n
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Example 2: Text Classification 
 Logistic regression model 

 Every term ti is assigned with a weight wi 

 

 

 

 

 

 

 Learning parameters: MLE approach 

 

 

 

 

 

 Need numerical solutions 
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Example 2: Text Classification 
 Logistic regression model 

 Every term ti is assigned with a weight wi 

 

 

 

 

 

 

 Learning parameters: MLE approach 

 

 

 

 

 

 Need numerical solutions 
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Example 2: Text Classification 

 Weight wi 

 wi > 0: term ti is a positive evidence 

 wi < 0: term ti is a negative evidence 

 wi = 0: term ti is irrelevant to the category of documents 

 The larger the | wi |, the more important ti term is determining whether 

the document is interesting. 

 Threshold c 

 

 

 

0 :  more likely to be a political document

0 :  more likely to be a non-political document

0 :  decision boundary
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Example 2: Text Classification 

• Dataset: Reuter-21578 

• Classification accuracy 

• Naïve Bayes: 77% 

• Logistic regression: 88% 



Discriminative Model 

 Logistic regression model is a discriminative model 

 Models the conditional probability p(y|x), i.e., the decision boundary 

 

 Generative model 

 Models p(x|y), i.e., input patterns of different classes 



Generative vs. Discriminative 

Classifiers 

 Discriminative classifiers  

 Assume some functional form for P(Y|X) 

 Estimate parameters of P(Y|X) directly from training data 

 

 Generative classifiers 

 Assume some functional form for P(X|Y), P(X) 

 Estimate parameters of P(X|Y), P(X) directly from training data 

 Use Bayes rule to calculate P(Y|X= xi) 

 



Asymptotic Difference 
 Notation: let                denote error of hypothesis learned via algorithm A, 

from m examples 

• If assumed model correct (e.g., naïve Bayes model), and finite number of 

parameters, then 

  

 

• If assumed model incorrect 

 

 

 Note assumed discriminative model can be correct even when generative 

model incorrect, but not vice versa 

 



Some 

experiments 

from UCI 

data sets 



Comparison 

Generative Model 

 

• Model P(x|y) 

• Model the input patterns 

• Usually fast converge 

• Cheap computation 

• Robust to noise data 

But 

• Usually performs worse 

Discriminative Model 

  

• Model P(y|x) directly 

• Model the decision 
boundary 

• Usually good performance  

But 

• Slow convergence 

• Expensive computation 

• Sensitive to noise data 
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Generative Model 

 

• Model P(x|y) 

• Model the input patterns 

• Usually fast converge 

• Cheap computation 

• Robust to noise data 

But 

• Usually performs worse 

Discriminative Model 

  

• Model P(y|x) directly 

• Model the decision 
boundary 

• Usually good performance  

But 

• Slow convergence 

• Expensive computation 

• Sensitive to noise in data 



The Bias-Variance Decomposition 
(Regression) 

 Assume that                     where                and                   

,                           then at an input point,  
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Bias, Variance and Model Complexity 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The figure is taken from Pg 194 of the book The Elements of 
Statistical Learning by Hastie, Tibshirani and Friedman. 

 



Bias-Variance Tradeoff 

 Minimize both bias and variance ? No free lunch 

 Simple models: low variance but high bias 

 

 

 
 
 

 ◦ Results from 3 random training sets D 

 ◦ Estimation is very stable over 3 runs (low variance) 

 ◦ But estimated models are too simple (high bias) 



Bias-Variance Tradeoff 

 Minimize both bias and variance ? No free lunch 

 Complex models: low bias but high variance 

 

 
 
 

 
 

 ◦ Results from 3 random training sets D 

 ◦ Estimated models complex enough (low bias) 

 ◦ But estimation is unstable over 3 runs (high variance) 



 We need a good tradeoff between bias and variance 

 

 Class of models are not too simple (so that we can 

approximate the true function well) 

 But not too complex to overfit the training samples 

(so that the estimation is stable) 

Bias-Variance Tradeoff 



Problems with Logistic Regression? 
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How about words that only appears in one class? 



Overfitting Problem with  

Logistic Regression 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 

 

 

 

 

 Consider the derivative of l(Dtrain) with respect to w 

 

 

 w will be infinite ! 
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Overfitting Problem with  

Logistic Regression 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 
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 w will be infinite ! 

( ) ( )

1 1

( )

1

( ) log ( | ) log ( | )

log ( | ) log ( | ) log ( | )

log ( | )

i

N N

train i ii i

N

i id d i

l D p d p d

p d p d p d

p d l l



  

 

 

 

 

   

     

   

 

 

( ) log ( | ) 1
0 0 0

1 exp

trainl D l lp d

w w w w c x w

    
      

        



Example of Overfitting for LogRes 

Iteration 

Decrease in the 

classification 

accuracy of test data 



Solution: Regularization 

 Regularized log-likelihood 

 

 

 

 s||w||2 is called the regularizer 

 Favors small weights 

 Prevents weights from becoming too large 
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The Rare Word Problem 

 Consider word t that only appears in one document d, and d is 

a positive document. Let w be its associated weight 
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The Rare Word Problem 
 Consider the derivative of l(Dtrain) with respect to w 

 

 

 

 

 

 

 

 

 When s is small, the derivative is still positive 

 But, it becomes negative when w is large 
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The Rare Word Problem 
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Regularized Logistic Regression 

Using regularization 

Without regularization 

Iteration 



Sparse Solution 

 What does the solution of regularized logistic 

regression look like ? 

 A sparse solution 

 Most weights are small and close to zero 



Sparse Solution 

 What does the solution of regularized logistic 

regression look like ? 

 A sparse solution 

 Most weights are small and close to zero 



Why do We Need Sparse Solution? 

 Two types of solutions 

1. Many non-zero weights but many of them are small 

2. Only a small number of non-zero weights, and many of them are 

large 

 Occam’s Razor: the simpler the better 

 A simpler model that fits data unlikely to be coincidence 

 A complicated model that fit data might be coincidence 

 Smaller number of non-zero weights  

  less amount of evidence to consider  

  simpler model 

  case 2 is preferred 



L1 vs. L2 Regularization 

 L2 Regularizer 

 many weights are closer to zero 

 Easy to optimize 

 L1 Regularizer 

 

 

 Many weights are zero 

 More difficult to optimize 
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Feature Selection (discrete) 

 Score each feature and select a subset 

 Iterative method: 

 Select a highest score feature from the pool 

 Re-score the rest, e.g., cross-validation accuracy on 

already-selected features (plus this one) 

 Iterate 

 

 Can also do in reverse direction  

 (remove one at a time) 



Gradient Ascent 

 Maximize the log-likelihood by iteratively adjusting the 

parameters in small increments 

 In each iteration, we adjust w in the direction that increases the 

log-likelihood (toward the gradient) 
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Prediction Errors 
Preventing weights 

from being too large 



Gradient Ascent 

 Maximize the log-likelihood by iteratively adjusting the 

parameters in small increments 

 In each iteration, we adjust w in the direction that increases the 

log-likelihood (toward the gradient) 
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Using regularization 

Without regularization 

Iteration 



When should Stop? 

 The gradient ascent learning method 

converges when there is no incentive to move 

the parameters in any particular direction: 

 

 

 
 

    

   

2

1 1 1

2

1 1 1

log ( | ) (1 ( | )) 0

log ( | ) (1 ( | )) 0

N m N

i i i i i i ii i i

N m N

i i i i i ii i i

p y x w sw x y p y x
w

p y x w y p y x
c

  

  


     




   



  

  



Multi-class Logistic Regression 

• How to extend logistic regression model to 

multi-class classification ? 



Conditional Exponential Model 

• Let classes be 

 

 

 

 

 
 

• Need to learn  

 

Normalization factor 

(partition function) 



Conditional Exponential Model 

• Learn weights ws by maximum conditional 

likelihood estimation 

 

 

 

 


