Logistic Regression

Mausam
Based on slides of Rong Jin, Tom Mitchell, Yi Zhang
Linear Regression

- \(y \) is continuous

\[y = \bar{x} \cdot \vec{w} + c \]
Logistic Regression Model

- The log-ratio of positive class to negative class

\[
\log \frac{p(y = 1| \tilde{x})}{p(y = -1| \tilde{x})} = \tilde{x} \cdot \tilde{w} + c
\]

\[
\frac{p(y = 1| \tilde{x})}{p(y = -1| \tilde{x})} = \exp(\tilde{x} \cdot \tilde{w} + c)
\]

\[
p(y = 1| \tilde{x}) + p(y = -1| \tilde{x}) = 1
\]
Logistic Regression Model

- The log-ratio of positive class to negative class

\[
\log \frac{p(y = 1| \bar{x})}{p(y = -1| \bar{x})} = \bar{x} \cdot \bar{w} + c
\]

\[
\frac{p(y = 1| \bar{x})}{p(y = -1| \bar{x})} = \exp(\bar{x} \cdot \bar{w} + c)
\]

\[
p(y = 1| \bar{x}) + p(y = -1| \bar{x}) = 1
\]

- Results

\[
p(y = -1| \bar{x}) = \frac{1}{1 + \exp(\bar{x} \cdot \bar{w} + c)}
\]

\[
p(y = 1| \bar{x}) = \frac{1}{1 + \exp(-\bar{x} \cdot \bar{w} - c)}
\]

\[
\Rightarrow p(y | \bar{x}) = \frac{1}{1 + \exp[-y(\bar{x} \cdot \bar{w} + c)]}
\]
Logistic Regression Model

- Assume the inputs and outputs are related in the log linear function

\[p(y | \bar{x}; \theta) = \frac{1}{1 + \exp[-y(\bar{x} \cdot \bar{w} + c)]]} \]

\[\theta = \{w_1, w_2, ..., w_d, c\} \]

- Estimate weights: MLE approach \(\{w_1, w_2, ..., w_d, c\} \)

\[\{\bar{w}, c\}^* = \max_{\bar{w}, c} l(D_{train}) = \max_{\bar{w}, c} \sum_{i=1}^{n} \log p(y_i | \bar{x}_i; \theta) \]

\[= \max_{\bar{w}, c} \sum_{i=1}^{n} \log \frac{1}{1 + \exp(-y[\bar{x} \cdot \bar{w} + c])} \]
Example 1: Heart Disease

- Input feature x: age group id
 - 1: 25-29
 - 2: 30-34
 - 3: 35-39
 - 4: 40-44
 - 5: 45-49
 - 6: 50-54
 - 7: 55-59
 - 8: 60-64

- Output y: having heart disease or not
 - +1: having heart disease
 - -1: no heart disease

<table>
<thead>
<tr>
<th>Age group</th>
<th>Number of People</th>
<th>No heart Disease</th>
<th>Heart disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: Heart Disease

- Logistic regression model

\[p(y \mid x) = \frac{1}{1 + \exp[-y(xw + c)]} \]

\[\theta = \{w, c\} \]

- Learning \(w \) and \(c \): MLE approach

\[l(D_{\text{train}}) = \sum_{i=1}^{8} \left\{ n_i(+) \log p(\ + \mid i) + n_i(\ -) \log p(\ - \mid i) \right\} \]

\[= \sum_{i=1}^{8} \left\{ n_i(+) \log \frac{1}{1 + \exp[-iw - c]} + n_i(\ -) \log \frac{1}{1 + \exp[iw + c]} \right\} \]

- Numerical optimization: \(w = 0.58, c = -3.34 \)
Example 1: Heart Disease

\[p(+ | x; \theta) = \frac{1}{1 + \exp[-xw - c]}; \quad p(- | x; \theta) = \frac{1}{1 + \exp[xw + c]} \]

- \(W = 0.58 \)
 - An old person is more likely to have heart disease

- \(C = -3.34 \)
 - \(xw + c < 0 \Rightarrow p(+|x) < p(-|x) \)
 - \(xw + c > 0 \Rightarrow p(+|x) > p(-|x) \)
 - \(xw + c = 0 \Rightarrow \) decision boundary
 - \(x^* = 5.78 \Rightarrow 53 \) year old
Example: Text Classification

- Learn to classify text into predefined categories
- Input \vec{x}: a document
 - Represented by a vector of words
 - Example: \{\text{(president, 10), (bush, 2), (election, 5), ...}\}
- Output y: if the document is politics or not
 - +1 for political document, -1 for not political document
- Training data: $\{\vec{d}_1^+, \vec{d}_2^+, ..., \vec{d}_{n_+}^+\}; \{\vec{d}_1^-, \vec{d}_2^-, ..., \vec{d}_{n_-}^-\}$
 \[N = n_+ + n_-\]

\[
\vec{d}_{i}^{(\pm)} = \{(\text{word}_1, t_{i,1}^{\pm}), (\text{word}_2, t_{i,2}^{\pm}), ..., (\text{word}_n, t_{i,n}^{\pm})\}
\]
Example 2: Text Classification

- Logistic regression model
- Every term t_i is assigned with a weight w_i

$$d = \{(\text{word}_1, t_1), (\text{word}_2, t_2), ..., (\text{word}_n, t_n)\}$$

$$p(y \mid d; \theta) = \frac{1}{1 + \exp[-y(\sum_i w_i \cdot t_i + c)')}$$

$$\theta = \{w_1, w_2, ..., w_n, c\}$$
Example 2: Text Classification

- Logistic regression model
 - Every term t_i is assigned with a weight w_i
 $$d = \{(\text{word}_1, t_1), (\text{word}_2, t_2), \ldots, (\text{word}_n, t_n)\}$$
 $$p(y | d; \theta) = \frac{1}{1 + \exp\left[-y(\sum_i w_i \cdot t_i + c)\right]}$$
 $$\theta = \{w_1, w_2, \ldots, w_n, c\}$$

- Learning parameters: MLE approach
 $$l(D_{\text{train}}) = \sum_{i=1}^{n^+} \log p(+ | d_i^+) + \sum_{i=1}^{n^-} \log p(- | d_i^-)$$
 $$= \sum_{i=1}^{n^+} \log \frac{1}{1 + \exp\left[-\sum_j w_j \cdot t_{i,j} - c\right]} + \sum_{i=1}^{n^-} \log \frac{1}{1 + \exp\left[\sum_j w_j \cdot t_{i,j} + c\right]}$$

- Need numerical solutions
Example 2: Text Classification

- **Weight** w_i
 - $w_i > 0$: term t_i is a positive evidence
 - $w_i < 0$: term t_i is a negative evidence
 - $w_i = 0$: term t_i is irrelevant to the category of documents
 - The larger the $|w_i|$, the more important t_i term is determining whether the document is interesting.
Example 2: Text Classification

- **Weight** w_i
 - $w_i > 0$: term t_i is a positive evidence
 - $w_i < 0$: term t_i is a negative evidence
 - $w_i = 0$: term t_i is irrelevant to the category of documents
 - The larger the $|w_i|$, the more important t_i term is determining whether the document is interesting.

- **Threshold** c

 $\sum_i w_i \cdot t_i + c > 0$: more likely to be a political document

 $\sum_i w_i \cdot t_i + c < 0$: more likely to be a non-political document

 $\sum_i w_i \cdot t_i + c = 0$: decision boundary
Example 2: Text Classification

- Dataset: Reuter-21578
- Classification accuracy
 - Naïve Bayes: 77%
 - Logistic regression: 88%
Discriminative Model

- Logistic regression model is a discriminative model
 - Models the conditional probability $p(y|x)$, i.e., the decision boundary

- Generative model
 - Models $p(x|y)$, i.e., input patterns of different classes
Generative vs. Discriminative Classifiers

- **Discriminative classifiers**
 - Assume some functional form for $P(Y|X)$
 - Estimate parameters of $P(Y|X)$ directly from training data

- **Generative classifiers**
 - Assume some functional form for $P(X|Y)$, $P(X)$
 - Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
 - Use Bayes rule to calculate $P(Y|X = x_i)$
Asymptotic Difference

- Notation: let \(\epsilon(h_{A,m}) \) denote error of hypothesis learned via algorithm A, from \(m \) examples

 - If assumed model correct (e.g., naïve Bayes model), and finite number of parameters, then
 \[
 \epsilon(h_{Dis,\infty}) = \epsilon(h_{Gen,\infty})
 \]

 - If assumed model incorrect
 \[
 \epsilon(h_{Dis,\infty}) \leq \epsilon(h_{Gen,\infty})
 \]

- Note assumed discriminative model can be correct even when generative model incorrect, but not vice versa
Some experiments from UCI data sets

Figure 1: Results of 15 experiments on datasets from the UCI Machine Learning repository. Plots are of generalization error vs. m (averaged over 1000 random train/test splits). Dashed line is logistic regression; solid line is naive Bayes.
Comparison

Generative Model

- Model $P(x|y)$
 - Model the input patterns

Discriminative Model

- Model $P(y|x)$ directly
 - Model the decision boundary
Comparison

Generative Model

- Model $P(x|y)$
 - Model the input patterns
- Usually fast converge
- Cheap computation
- Robust to noise data

But
- Usually performs worse

Discriminative Model

- Model $P(y|x)$ directly
 - Model the decision boundary
- Usually good performance

But
- Slow convergence
- Expensive computation
- Sensitive to noise in data
The Bias-Variance Decomposition (Regression)

- Assume that \(Y = f(X) + \varepsilon \) where \(E(\varepsilon) = 0 \) and
 \(Var(\varepsilon) = \sigma_\varepsilon^2 \) then at an input point, \(X = x_0 \)

\[
Err(x_0) = E[(Y - \hat{f}(x_0))^2 | X = x_0] = \sigma_\varepsilon^2 + [Ef(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - Ef(x_0)]^2
\]

\[
= \sigma_\varepsilon^2 + Bias^2(\hat{f}(x_0)) + Var(\hat{f}(x_0))
\]

\[= \text{Irreducible Error} + \text{Bias}^2 + \text{Variance}\]
Bias, Variance and Model Complexity

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied.

- The figure is taken from Pg 194 of the book *The Elements of Statistical Learning* by Hastie, Tibshirani and Friedman.
Bias-Variance Tradeoff

- Minimize both bias and variance? No free lunch
- Simple models: low variance but high bias

° Results from 3 random training sets D
° Estimation is very stable over 3 runs (low variance)
° But estimated models are *too simple* (high bias)
Bias-Variance Tradeoff

- Minimize both bias and variance? No free lunch
- Complex models: low bias but high variance

- Results from 3 random training sets D
- Estimated models complex enough (low bias)
- But estimation is unstable over 3 runs (high variance)
Bias-Variance Tradeoff

- We need a good tradeoff between bias and variance.
- Class of models are not too simple (so that we can approximate the true function well).
- But not too complex to overfit the training samples (so that the estimation is stable).
Problems with Logistic Regression?

\[
p(\pm | \tilde{x}; \theta) = \frac{1}{1 + \exp[\mp(c + x_1 w_1 + x_2 w_2 + \cdots + x_m w_m)]}
\]

\[\theta = \{w_1, w_2, \ldots, w_m, c\}\]

How about words that only appears in one class?
Overfitting Problem with Logistic Regression

- Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight.

\[
l(D_{\text{train}}) = \sum_{i=1}^{N(+) \log p(+ \mid d_i^+)} + \sum_{i=1}^{N(-) \log p(- \mid d_i^-)}
\]

\[
= \log p(\cdot \mid d) + \sum_{d_i^+ \neq d} \log p(\cdot \mid d_i^+) + \sum_{i=1}^{N(-) \log p(- \mid d_i^-)}
\]

\[
= \log p(\cdot \mid d) + l_+ + l_-
\]
Overfitting Problem with Logistic Regression

- Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight.

\[
l(D_{\text{train}}) = \sum_{i=1}^{N(+)} \log p(+) \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(-) \mid d_i^-
\]

\[
= \log p(+) \mid d) + \sum_{d_i^+ \neq d} \log p(+) \mid d_i^+) + \sum_{i=1}^{N(-)} \log p(-) \mid d_i^-
\]

\[
= \log p(+) \mid d) + l_+ + l_-
\]

- Consider the derivative of $l(D_{\text{train}})$ with respect to w

\[
\frac{\partial l(D_{\text{train}})}{\partial w} = \frac{\partial \log p(+) \mid d)}{\partial w} + \frac{\partial l_+}{\partial w} + \frac{\partial l_-}{\partial w} = \frac{1}{1 + \exp[c + \bar{x} \cdot \bar{w}]} + 0 + 0 > 0
\]

- w will be infinite!
Example of Overfitting for LogRes

![Graph showing the decrease in classification accuracy of test data over iterations.]

Decrease in the classification accuracy of test data
Solution: Regularization

- **Regularized log-likelihood**

\[
\ell_{\text{reg}}(D_{\text{train}}) = \ell(D_{\text{train}}) - s \left\| \vec{w} \right\|_2^2
\]

\[
= \sum_{i=1}^{N(+)} \log p(+) \mid d_i^+ + \sum_{i=1}^{N(-)} \log p(-) \mid d_i^- - s \sum_{i=1}^{m} w_i^2
\]

- \(s\|\vec{w}\|_2 \) is called the regularizer
 - Favors small weights
 - Prevents weights from becoming too large
The Rare Word Problem

- Consider word t that only appears in one document d, and d is a positive document. Let w be its associated weight

$$l(D_{\text{train}}) = \sum_{i=1}^{N(\text{+})} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(\text{-})} \log p(- \mid d_i^-)$$

$$= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(\text{-})} \log p(- \mid d_i^-)$$

$$= \log p(+ \mid d) + l_+ + l_-$$

$$l_{\text{reg}}(D_{\text{train}}) = \sum_{i=1}^{N(\text{+})} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(\text{-})} \log p(- \mid d_i^-) - s \sum_{i=1}^{m} w_i^2$$

$$= \log p(+ \mid d) + \sum_{d_i^+ \neq d} \log p(+ \mid d_i^+) + \sum_{i=1}^{N(\text{-})} \log p(- \mid d_i^-) - s \sum_{i=1}^{m} w_i^2$$

$$= \log p(+ \mid d) + l_+ + l_- - s \sum_{i=1}^{m} w_i^2$$
The Rare Word Problem

- Consider the derivative of $l(D_{\text{train}})$ with respect to w

\[
\frac{\partial l(D_{\text{train}})}{\partial w} = \frac{\partial \log p(+ | d)}{\partial w} + \frac{\partial l_+}{\partial w} + \frac{\partial l_-}{\partial w} = \frac{1}{1 + \exp[c + \bar{x} \cdot \bar{w}]} + 0 + 0 > 0
\]

\[
\frac{\partial l_{\text{reg}} (D_{\text{train}})}{\partial w} = \frac{\partial \log p(+ | d)}{\partial w} + \frac{\partial l_+}{\partial w} + \frac{\partial l_-}{\partial w} - 2sw
\]

\[
= \frac{1}{1 + \exp[c + \bar{x} \cdot \bar{w}]} + 0 + 0 - 2sw
\]
The Rare Word Problem

- Consider the derivative of $l(D_{\text{train}})$ with respect to w

\[
\frac{\partial l(D_{\text{train}})}{\partial w} = \frac{\partial \log p(+|d)}{\partial w} + \frac{\partial l_+}{\partial w} + \frac{\partial l_-}{\partial w} = \frac{1}{1 + \exp[c + \vec{x} \cdot \vec{w}]} + 0 + 0 > 0
\]

- When w is small, the derivative is still positive
- But, it becomes negative when w is large
Regularized Logistic Regression

![Graph showing classification accuracy over iterations with and without regularization.](image-url)
Sparse Solution

- What does the solution of regularized logistic regression look like?
Sparse Solution

- What does the solution of regularized logistic regression look like?
- A sparse solution
 - Most weights are small and close to zero
Why do We Need Sparse Solution?

- Two types of solutions
 1. Many non-zero weights but many of them are small
 2. Only a small number of non-zero weights, and many of them are large

- Occam’s Razor: the simpler the better
 - A simpler model that fits data unlikely to be coincidence
 - A complicated model that fit data might be coincidence
 - Smaller number of non-zero weights
 - less amount of evidence to consider
 - simpler model
 - case 2 is preferred
L1 vs. L2 Regularization

- **L2 Regularizer**
 - Many weights are closer to zero
 - Easy to optimize

- **L1 Regularizer**

 \[l_{\text{reg}}(D_{\text{train}}) = l(D_{\text{train}}) - s\|\vec{w}\|_1 \]

 - Many weights are zero
 - More difficult to optimize
Feature Selection (discrete)

- Score each feature and *select a subset*
 - Iterative method:
 - Select a highest score feature from the pool
 - *Re-score* the rest, e.g., cross-validation accuracy on already-selected features (plus this one)
 - Iterate

- Can also do in reverse direction
 - (remove one at a time)
Gradient Ascent

- Maximize the log-likelihood by iteratively adjusting the parameters in small increments.
- In each iteration, we adjust \(w \) in the direction that increases the log-likelihood (toward the gradient).

\[
\text{Prediction Errors}
\]

\[
\begin{aligned}
\text{Preventing weights from being too large:}

\hat{w} = \bar{w} + \varepsilon \left\{ -s \bar{w} + \sum_{i=1}^{N} \bar{x}_i \left[y_i (1 - p(y_i | \bar{x}_i)) \right] \right\}
\end{aligned}
\]
Gradient Ascent

- Maximize the log-likelihood by iteratively adjusting the parameters in small increments

- In each iteration, we adjust \(w \) in the direction that increases the log-likelihood (toward the gradient)

\[
\tilde{w} \leftarrow \tilde{w} + \epsilon \frac{\partial}{\partial \tilde{w}} \left\{ \sum_{i=1}^{N} \log p(y_i | \tilde{x}_i) - s \sum_{i=1}^{m} w_i^2 \right\} \\
= \tilde{w} + \epsilon \left\{ -s \tilde{w} + \sum_{i=1}^{N} \tilde{x}_i \left[y_i (1 - p(y_i | \tilde{x}_i)) \right] \right\}
\]

\[
c \leftarrow c + \epsilon \frac{\partial}{\partial c} \left\{ \sum_{i=1}^{N} \log p(y_i | \tilde{x}_i) - s \sum_{i=1}^{m} w_i^2 \right\} \\
= c + \epsilon \left\{ \sum_{i=1}^{N} y_i (1 - p(y_i | \tilde{x}_i)) \right\}
\]

where \(\epsilon \) is learning rate.
Using regularization
Without regularization

Classification Accuracy

Iteration
When should Stop?

- The gradient ascent learning method converges when there is no incentive to move the parameters in any particular direction:

\[
\frac{\partial}{\partial \vec{w}} \left\{ \sum_{i=1}^{N} \log p(y_i | \bar{x}_i) - \sum_{i=1}^{m} w_i^2 \right\} = \left\{ -s\vec{w} + \sum_{i=1}^{N} \bar{x}_i \left[y_i \left(1 - p(y_i | \bar{x}_i)\right)\right] \right\} = 0
\]

\[
\frac{\partial}{\partial c} \left\{ \sum_{i=1}^{N} \log p(y_i | \bar{x}_i) - \sum_{i=1}^{m} w_i^2 \right\} = \left\{ \sum_{i=1}^{N} y_i \left(1 - p(y_i | \bar{x}_i)\right) \right\} = 0
\]
Multi-class Logistic Regression

- How to extend logistic regression model to multi-class classification?

\[
\ln \frac{p(y = 1|x)}{p(y = -1|x)} = w^\top x
\]

\[
p(y|x) = \frac{1}{\exp(-y w^\top x) + 1}
\]

\[
= \sigma(y w^\top x)
\]

\[
w^\top x + b = 0
\]
Conditional Exponential Model

- Let classes be $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_K$

 \[p(C_k|x) \propto \exp(w_k^\top x) \]

 \[p(C_k|x) = \frac{1}{Z(x)} \exp(w_k^\top x) \]

 Normalization factor (partition function) \[Z(x) = \sum_{k=1}^{K} \exp(w_k^\top x) \]

- Need to learn w_1, w_2, \ldots, w_K
Conditional Exponential Model

- Learn weights ws by maximum conditional likelihood estimation

$$
\mathcal{L}(W) = \sum_{i=1}^{N} \ln p(y_i | x_i) = \sum_{i=1}^{N} \ln \frac{\exp(x_i^\top w_{y_i})}{\sum_{k=1}^{K} \exp(x_i^\top w_k)}
$$

$$
W^* = \arg \max_W \mathcal{L}(W)
$$