Approximate Inference in Bayes Nets
Sampling based methods

Mausam

(Based on slides by Jack Breese and Daphne Koller)
Bayes Nets is a generative model

- We can easily generate samples from the distribution represented by the Bayes net
 - Generate one variable at a time in topological order

Use the samples to compute marginal probabilities, say $P(c)$
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$
- $P(a|b) = 0.98$
- $P(a|\bar{b}) = 0.7$
- $P(a|\bar{e}) = 0.4$
- $P(a|\bar{b},\bar{e}) = 0.01$
- $P(c|a) = 0.8$
- $P(c|\bar{a}) = 0.05$
- $P(n|e) = 0.3$
- $P(n|\bar{e}) = 0.001$

The diagram shows the conditional probabilities and the relationships between events B, C, a, e, n, and the alarm and newscast. The event $Call = c$ is the outcome of interest.
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$
- $P(a|b) = 0.98$
- $P(a|\neg b) = 0.7$
- $P(a|\neg b, \neg e) = 0.4$
- $P(a|\neg b, e) = 0.01$
- $P(c|a) = 0.8$
- $P(c|\neg a) = 0.05$

Samples:

- B, E, A, C, N

Call = c

Alarm

Burglary

Earthquake
Stochastic simulation \(P(B|C) \)

- **Burglary**
 - \(P(b) = 0.03 \)
 - \(P(a|b) \):
 - \(b \rightarrow e \): 0.98
 - \(b \rightarrow \bar{e} \): 0.7
 - \(\bar{b} \rightarrow e \): 0.4
 - \(\bar{b} \rightarrow \bar{e} \): 0.01

- **Earthquake**
 - \(P(e) = 0.001 \)
 - \(P(a|e) \):
 - \(e \rightarrow a \): 0.3
 - \(e \rightarrow \bar{a} \): 0.001

- **Alarm**
 - \(P(c) \):
 - \(a \rightarrow c \): 0.8
 - \(\bar{a} \rightarrow c \): 0.05

- **Newscast**
 - \(P(n) \):
 - \(e \rightarrow n \): 0.3
 - \(\bar{e} \rightarrow n \): 0.001

Samples:

- \(B \) \(E \) \(A \) \(C \) \(N \)
Stochastic simulation $P(B|C)$

- $P(B) = 0.03$
- $P(e) = 0.001$
- $P(B|C) = \frac{P(B \cap C)}{P(C)}$
- $P(B \cap C)$ can be calculated as $P(B) \times P(C|B)$
- $P(C|B)$ can be calculated as $\frac{P(B \cap C)}{P(B)}$ (assuming $P(B)$ and $P(C)$ are independent)

Bayesian Network

- **Burglary** (B)
 - $P(b) = 0.03$
 - $P(b|\neg b) = 0.8$
 - $P(b|b) = 0.2$
- **Earthquake** (E)
 - $P(e) = 0.001$
 - $P(e|\neg e) = 0.99$
 - $P(e|e) = 0.1$
- **Alarm** (A)
 - $P(a|b) = 0.98$
 - $P(a|\neg b) = 0.02$
- **Newscast** (N)
 - $P(n|e) = 0.3$
 - $P(n|\neg e) = 0.001$
- **Call** (C)
 - $P(c|a) = 0.8$
 - $P(c|\neg a) = 0.05$
 - $P(c|\neg a) = 0.05$

Samples:

- Sample: b

Probability Calculations:

- $P(B \cap C) = P(B) \times P(C|B)$
- $P(C) = P(B) \times P(C|B)$
- $P(B|C) = \frac{P(B \cap C)}{P(C)}$

Independence Assumption:

- If B and C are independent, then $P(B \cap C) = P(B) \times P(C)$.

Conditional Independence:

- If B and C are independent, then $P(B|C) = P(B)$.

Bayesian Inference:

- $P(B|C)$ can be updated using Bayes' theorem:

 $$P(B|C) = \frac{P(C|B) \times P(B)}{P(C)}$$

- $P(C) = P(C|B) \times P(B) + P(C|\neg B) \times P(\neg B)$
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$

Burglary
- $P(a|b) = 0.98$
- $P(a|\neg b) = 0.7$
- $P(\neg a|b) = 0.4$
- $P(\neg a|\neg b) = 0.01$

Earthquake
- $P(e|a) = 0.8$
- $P(e|\neg a) = 0.05$

Alarm
- $P(\neg c|b) = 0.97$
- $P(c|\neg b) = 0.3$

Newscast
- $P(\neg e|a) = 0.3$
- $P(e|\neg a) = 0.001$

Samples:
- \bar{b}
Stochastic simulation \(P(B|C) \)

\[
\begin{align*}
P(b) & = 0.03 \\
P(a) & = 0.98 \quad 0.7 \quad 0.4 \quad 0.01 \\
P(c) & = 0.8 \quad 0.05 \\
P(n) & = 0.3 \quad 0.001
\end{align*}
\]

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{b})</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stochastic simulation $P(B|C)$

$P(b) = 0.03$

<table>
<thead>
<tr>
<th>b</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>0.7</td>
</tr>
</tbody>
</table>

$P(a|b) = 0.4$

$P(a|\bar{b}) = 0.01$

$P(c|a) = 0.8$

$P(c|\bar{a}) = 0.05$

$P(e|a) = 0.3$

$P(e|\bar{a}) = 0.001$

Samples:

$\bar{b} \quad e$

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Stochastic simulation $P(B|C)$

$P(b) = 0.03$

$P(e) = 0.001$

$P(a|b,e) = 0.98$
$P(a|b,\not{e}) = 0.7$
$P(a|\not{b},e) = 0.4$
$P(a|\not{b},\not{e}) = 0.01$

$P(c|a) = 0.8$
$P(c|\not{a}) = 0.05$

$P(B) = P(b) \cdot P(a|b) + P(\not{b}) \cdot P(a|\not{b})$

$P(E) = P(e) \cdot P(a|e) + P(\not{e}) \cdot P(a|\not{e})$

Samples:

$\bar{b} e a$

$Call = c$
Stochastic simulation $P(B|C)$

$P(b) = 0.03$

Burglary

<table>
<thead>
<tr>
<th>b</th>
<th>e</th>
<th>\bar{b}</th>
<th>\bar{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(a)$</td>
<td>0.98</td>
<td>0.7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Earthquake

$P(e) = 0.001$

Alarm

Call

$P(c) = 0.8$

Newscast

<table>
<thead>
<tr>
<th>e</th>
<th>\bar{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(n)$</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>e</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stochastic simulation $P(B|C)$

- **Burglary**
 - $P(b) = 0.03$
 - $P(a) = 0.98$
 - $P(c) = 0.8$

- **Earthquake**
 - $P(e) = 0.001$
 - $P(n) = 0.3$

- **Alarm**
 - Call = c

- **Newscast**
 - $P(c|e) = 0.001$
 - $P(c|\bar{e}) = 0.05$

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(e)</td>
<td>(a)</td>
<td>(c)</td>
<td></td>
</tr>
</tbody>
</table>
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$
- $P(a|b) = 0.98$
- $P(a|\overline{b}) = 0.7$
- $P(\overline{a}|b) = 0.4$
- $P(\overline{a}|\overline{b}) = 0.01$
- $P(c|a) = 0.8$
- $P(c|\overline{a}) = 0.05$
- $P(n|e) = 0.3$
- $P(n|\overline{e}) = 0.001$

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{b}</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$
- $P(a) = 0.98$
- $P(c) = 0.8$

- Burglary
- Earthquake
- Alarm
- Newscast

Samples:

- B, E, A, C, N
- $\overline{b}, e, a, c, \overline{n}$
Stochastic simulation $P(B|C)$

- $P(b) = 0.03$
- $P(e) = 0.001$

Evidence
- b: Burglary
- e: Earthquake

Probabilities
- $P(a) = 0.98$
- $P(c) = 0.8$

Call and Newscast
- $P(n) = 0.3$

Samples:
- $B E A C N$
- $\bar{b} e a c n$
- $b \bar{e} a c n$

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Stochastic simulation $P(B | C)$

- $P(b) = 0.03$
- $P(e) = 0.001$
- $P(a | b) = 0.98$, $P(a | \bar{b}) = 0.7$
- $P(n | a) = 0.8$, $P(n | \bar{a}) = 0.05$
- $P(\bar{n} | a) = 0.3$, $P(\bar{n} | \bar{a}) = 0.001$

Samples:

- $\bar{b} \ e \ a \ c \ n$
- $b \ e \ a \ c \ n$

$P(B | C)$ = Call

$P(E | C)$ = Newscast

$P(A | B)$ = Alarm

$P(C | B)$ = Burglary

$P(C | \bar{B})$ = Earthquake

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Stochastic simulation $P(B|C)$

Samples:

- $b\overline{e}a\overline{c}\overline{n}$
- $b\overline{e}a\overline{c}n$
- \ldots

P(b): 0.03

P(a): 0.98
- $b\overline{e}$: 0.7
- $\overline{b}\overline{e}$: 0.4
- $\overline{b}e$: 0.01

P(c): 0.8
- a: 0.8
- \overline{a}: 0.05

P(e): 0.001

Burglary

Earthquake

Alarm

Call = c

Newscast

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Stochastic simulation $P(B|C)$

$P(b) = 0.03$

$P(a) = 0.98$

$P(c) = 0.8$

$P(e) = 0.001$

$P(n) = 0.3$

Samples:

$P(b|c) \sim \frac{\text{# of live samples with } B=b}{\text{total # of live samples}}$

© Jack Breese (Microsoft) & Daphne Koller (Stanford)
Rejection Sampling

• Sample from the prior
 – reject if do not match the evidence

• Returns consistent posterior estimates

• Hopelessly expensive if $P(e)$ is small
 – $P(e)$ drops off exponentially with no. of evidence vars
Likelihood Weighting

• Idea:
 – fix evidence variables
 – sample only non-evidence variables
 – weight each sample by the likelihood of evidence
Likelihood weighting $P(B|C)$

- **Burglary**
 - a: 0.8
 - \bar{a}: 0.05

- **Earthquake**

- **Alarm**
 - Call = c

- **Newscast**

Samples:

```
B E A C N
```
Likelihood weighting $P(B|C)$
Likelihood weighting $P(B|C)$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>$\neg a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c)$</td>
<td>0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>$P(\neg c)$</td>
<td>0.2</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg b$</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B for Burglary, E for Earthquake, A for Alarm, C for Call, N for Newscast.
Likelihood weighting $P(B|C)$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>\bar{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c)$</td>
<td>0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>$P(\bar{c})$</td>
<td>0.2</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>e</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Likelihood weighting \(P(B|C) \)

\[
\begin{array}{c|cc}
 & a & \overline{a} \\
P(c) & 0.8 & 0.05 \\
P(\overline{c}) & 0.2 & 0.95 \\
\end{array}
\]

Samples:

\[
\begin{array}{cccccc}
B & E & A & C & N \\
\overline{b} & e & a & c & \text{ } \\
\end{array}
\]
Likelihood weighting $P(B | C)$

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{b}</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>\overline{n}</td>
</tr>
</tbody>
</table>

$P(c) = 0.8 \quad P(\overline{c}) = 0.2$

$P(a) = 0.05 \quad P(\overline{a}) = 0.95$
Likelihood weighting $P(B|C)$

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>n</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Likelihood weighting $P(B | C)$

$P(B | C)$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>\bar{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(B)$</td>
<td>0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>$P(\overline{B})$</td>
<td>0.2</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{b}</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>\overline{n}</td>
<td>0.8</td>
</tr>
<tr>
<td>b</td>
<td>\overline{e}</td>
<td>\overline{a}</td>
<td>c</td>
<td>n</td>
<td>0.05</td>
</tr>
</tbody>
</table>

$\text{Call} = c$
Likelihood weighting $P(B|C)$

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{b}</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>\overline{n}</td>
<td>0.8</td>
</tr>
<tr>
<td>b</td>
<td>e</td>
<td>a</td>
<td>c</td>
<td>n</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Likelihood weighting $P(B|C)$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>\bar{a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(c)$</td>
<td>0.8</td>
<td>0.05</td>
</tr>
<tr>
<td>$P(\bar{c})$</td>
<td>0.2</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Samples:

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>C</th>
<th>N</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{b}</td>
<td>\bar{e}</td>
<td>a</td>
<td>c</td>
<td>\bar{n}</td>
<td>0.8</td>
</tr>
<tr>
<td>b</td>
<td>\bar{e}</td>
<td>\bar{a}</td>
<td>c</td>
<td>n</td>
<td>0.05</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$P(b|c) = \frac{\text{weight of samples with } B=b}{\text{total weight of samples}}$
Likelihood Weighting

- **Sampling probability**: \(S(z,e) = \prod_i P(z_i | \text{Parents}(Z_i)) \)
 - Neither prior nor posterior
- **Wt for a sample \(<z,e>\)**: \(w(z,e) = \prod_i P(e_i | \text{Parents}(E_i)) \)
- **Weighted Sampling probability** \(S(z,e)w(z,e) \)
 \[
 = \prod_i P(z_i | \text{Parents}(Z_i)) \prod_i P(e_i | \text{Parents}(E_i))
 = P(z,e)
 \]
 - returns consistent estimates
- performance degrades w/ many evidence vars
 - but a few samples have nearly all the total weight
 - late occurring evidence vars do not guide sample generation
MCMC with Gibbs Sampling

• Fix the values of observed variables
• Set the values of all non-observed variables randomly
• Perform a random walk through the space of complete variable assignments. On each move:
 1. Pick a variable X
 2. Calculate $\Pr(X=\text{true} \mid \text{all other variables})$
 3. Set X to true with that probability
• Repeat many times. Frequency with which any variable X is true is it’s posterior probability.
• Converges to true posterior when frequencies stop changing significantly
 – stable distribution, mixing
Markov Blanket Sampling

• How to calculate $\Pr(X=\text{true} \mid \text{all other variables})$?

• Recall: a variable is independent of all others given it’s Markov Blanket
 – parents
 – children
 – other parents of children

• So problem becomes calculating $\Pr(X=\text{true} \mid \text{MB}(X))$
 – We solve this sub-problem exactly
 – Fortunately, it is easy to solve

$$P(X) = \alpha P(X \mid \text{Parents}(X)) \prod_{Y \in \text{Children}(X)} P(Y \mid \text{Parents}(Y))$$
Example

\[P(X) = \alpha P(X \mid Parents(X)) \prod_{Y \in \text{Children}(X)} P(Y \mid Parents(Y)) \]

\[
P(X \mid A, B, C) = \frac{P(X, A, B, C)}{P(A, B, C)}
\]

\[
= \frac{P(A)P(X \mid A)P(C)P(B \mid X, C)}{P(A, B, C)}
\]

\[
= \left[\frac{P(A)P(C)}{P(A, B, C)} \right] P(X \mid A)P(B \mid X, C)
\]

\[
= \alpha P(X \mid A)P(B \mid X, C)
\]
Example

Smoking

<table>
<thead>
<tr>
<th>P(s)</th>
<th>0.2</th>
</tr>
</thead>
</table>

Heart disease

<table>
<thead>
<tr>
<th>P(h)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0.6</td>
</tr>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Lung disease

<table>
<thead>
<tr>
<th>P(g)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0.8</td>
</tr>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Shortness of breath

<table>
<thead>
<tr>
<th>H</th>
<th>G</th>
<th>P(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>g</td>
<td>0.9</td>
</tr>
<tr>
<td>h</td>
<td>~g</td>
<td>0.8</td>
</tr>
<tr>
<td>~h</td>
<td>g</td>
<td>0.7</td>
</tr>
<tr>
<td>~h</td>
<td>~g</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Example

- Smoking
 - Heart disease
 - Lung disease
- Shortness of breath

<table>
<thead>
<tr>
<th>H</th>
<th>G</th>
<th>P(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>g</td>
<td>0.9</td>
</tr>
<tr>
<td>h</td>
<td>~g</td>
<td>0.8</td>
</tr>
<tr>
<td>~h</td>
<td>g</td>
<td>0.7</td>
</tr>
<tr>
<td>~h</td>
<td>~g</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- Evidence: s, b
Example

- Evidence: s, b
- Randomly set: h, b

<table>
<thead>
<tr>
<th>H</th>
<th>G</th>
<th>P(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>g</td>
<td>0.9</td>
</tr>
<tr>
<td>h</td>
<td>~g</td>
<td>0.8</td>
</tr>
<tr>
<td>~h</td>
<td>g</td>
<td>0.7</td>
</tr>
<tr>
<td>~h</td>
<td>~g</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
</tr>
<tr>
<td>~s</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
</tr>
<tr>
<td>~s</td>
</tr>
<tr>
<td>0.8</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>
Example

- Evidence: s, b
- Randomly set: h, g
- Sample H using $P(H|s,g,b)$

<table>
<thead>
<tr>
<th>s</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(h)</th>
<th>s</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>~s</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

$P(g)$

<table>
<thead>
<tr>
<th>s</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

$P(b)$

<table>
<thead>
<tr>
<th>H</th>
<th>G</th>
<th>P(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>g</td>
<td>0.9</td>
</tr>
<tr>
<td>h</td>
<td>~g</td>
<td>0.8</td>
</tr>
<tr>
<td>~h</td>
<td>g</td>
<td>0.7</td>
</tr>
<tr>
<td>~h</td>
<td>~g</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Example

- Evidence: s, b
- Randomly set: ~h, g
- Sample H using P(H|s,g,b)
- Suppose result is ~h

<table>
<thead>
<tr>
<th>P(s)</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(g)</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>0.8</td>
</tr>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(h)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0.6</td>
</tr>
<tr>
<td>~s</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P(b)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h g</td>
<td>0.9</td>
</tr>
<tr>
<td>h ~g</td>
<td>0.8</td>
</tr>
<tr>
<td>~h g</td>
<td>0.7</td>
</tr>
<tr>
<td>~h ~g</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Example

- Evidence: s, b
- Randomly set: ~h, g
- Sample H using $P(H|s,g,b)$
 - Suppose result is ~h
 - Sample G using $P(G|s,\sim h,b)$
Evidence: s, b
Randomly set: ~h, g
Sample H using $P(H|s,g,b)$
Suppose result is ~h
Sample G using $P(G|s,\sim h,b)$
⇒ Suppose result is g
Example

- Evidence: s, b
- Randomly set: ~h, g
- Sample H using $P(H|s,g,b)$
 - Suppose result is ~h
 - Sample G using $P(G|s,~h,b)$
 - Suppose result is g
 - Sample G using $P(G|s,~h,b)$
Example

- Evidence: s, b
- Randomly set: ~h, g

Sample H using $P(H|s,g,b)$
Suppose result is ~h
Sample G using $P(G|s,\sim h,b)$
⇒ Suppose result is g
Sample G using $P(G|s,\sim h,b)$
⇒ Suppose result is ~g
Gibbs MCMC Summary

\[P(X|E) = \frac{\text{number of samples with } X=x}{\text{total number of samples}} \]

• Advantages:
 – No samples are discarded
 – No problem with samples of low weight
 – Can be implemented very efficiently
 • 10K samples @ second

• Disadvantages:
 – Can get stuck if relationship between two variables is deterministic
 – Many variations have been devised to make MCMC more robust
Other inference methods

• Exact inference
 – Junction tree

• Approximate inference
 – Belief Propagation
 – Variational Methods