Logic in Al Chapter 7

Dan Weld
(With some slides from Mausam, Stuart Russell, Dieter Fox, Henry Kautz...)

Knowledge Representation

- represent knowledge in a manner that facilitates inferencing (i.e. drawing conclusions) from knowledge.
- Typically based on
- Logic
- Probability
- Logic and Probability

Some KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Semantic Networks
- Concept Description Languages
- Non-monotonic Logic

Basic Idea of Logic

- By starting with true assumptions, you can deduce true conclusions.

Truth

-Francis Bacon (1561-1626)

No pleasure is comparable to the standing upon the vantage-ground of truth.
-Thomas Henry Huxley (18251895)

Irrationally held truths may be more harmful than reasoned errors.
-John Keats (1795-1821)
Beauty is truth, truth beauty; that is all ye know on earth, and all ye need to know.
-Blaise Pascal (1623-1662)
We know the truth, not only by the reason, but also by the heart.
-François Rabelais (c. 1490-1553)
Speak the truth and shame the Devil.
-Daniel Webster (1782-1852)
There is nothing so powerful as truth, and often nothing so strange.

Components of KR

- Syntax: defines the sentences in the language
- Semantics: defines the "meaning" of sentences
- Inference Procedure
- Algorithm
- Sound?
- Complete?
- Complexity
- Knowledge Base

Knowledge bases

Inference engine
Knowledge base

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
© D. Weld, D. Fox

Propositional Logic

- Syntax
- Atomic sentences: P, Q, ...
- Connectives: $\wedge, \vee, \neg, \Rightarrow$
- Semantics
- Truth Tables
- Inference
- Modus Ponens
- Resolution
- DPLL
- GSAT
- Complexity

Propositional Logic: Syntax

- Atoms
-P, Q, R, ...
- Literals
$-P, \neg P$
- Sentences
- Any literal is a sentence
- If S is a sentence
- Then $(S \wedge S)$ is a sentence
- Then $(S \vee S)$ is a sentence
- Conveniences
$\mathrm{P} \rightarrow \mathrm{Q}$ same as $\neg \mathrm{P} \vee \mathrm{Q}$

Semantics

- Syntax: which arrangements of symbols are legal
- (Def "sentences")
- Semantics: what the symbols mean in the world
- (Mapping between symbols and worlds)

Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
- Assignment to each variable either T or F
- Assignment of T or F to each connective via defns

Satisfiability, Validity, \& Entailment

- S is satisfiable if it is true in some world
- S is unsatisfiable if it is false all worlds
- S is valid if it is true in all worlds
- S1 entails S2 if wherever S 1 is true S 2 is also true

Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R \\
& S \wedge(W \wedge \neg S) \\
& T \vee \neg T \\
& x \rightarrow x
\end{aligned}
$$

Notation

\}

Implication (syntactic symbol)

Proves: $\left.S 1\right|_{-i} S 2$ if inference algo, i, says ' $s 2$ ' from $S 1$
=
Entails: S 1 |= S 2 if wherever S 1 is true S 2 is also true

- Sound

$$
|-\rightarrow|=
$$

- Complete $|=\rightarrow|-$

Prop. Logic: Knowledge Engr

1) One of the women is a biology major
2) Lisa is not next to Dave in the ranking
3) Dave is immediately ahead of Jim
4) Jim is immediately ahead of a bio major
5) Mary or Lisa is ranked first
1. Choose Vocabulary Universe: Lisa, Dave, Jim, Mary

LD = "Lisa is immediately ahead of Dave"
D = "Dave is a Bio Major"
2. Choose initial sentences (wffs)

Reasoning Tasks

Model finding

$K B=$ background knowledge
S = description of problem
Show ($K B \wedge S$) is satisfiable
A kind of constraint satisfaction

Deduction

S = question
Prove that KB $\mid=S$
Two approaches:

- Rules to derive new formulas from old (inference)
- Show $(K B \wedge \neg S)$ is unsatisfiable

Special Syntactic Forms

- General Form:

$$
((q \wedge \neg r) \rightarrow s)) \wedge \neg(s \wedge t)
$$

- Conjunction Normal Form (CNF)

$$
(\neg q \vee r \vee s) \wedge(\neg s \vee \neg t)
$$

Set notation: $\{(\neg \mathrm{q}, \mathrm{r}, \mathrm{s}),(\neg \mathrm{s}, \neg \mathrm{t})\}$ empty clause () = false

- Binary clauses: 1 or 2 literals per clause

$$
(\neg q \vee r) \quad(\neg s \vee \neg t)
$$

- Horn clauses: 0 or 1 positive literal per clause

$$
\begin{array}{ll}
(\neg \mathrm{q} \vee \neg \mathrm{r} \vee \mathrm{~s}) & (\neg \mathrm{s} \vee \neg \mathrm{t}) \\
(\mathrm{q} \wedge \mathrm{r}) \rightarrow \mathrm{s} & (\mathrm{~s} \wedge \mathrm{t}) \rightarrow \text { false }
\end{array}
$$

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam

Inference 1: Forward Chaining

Forward Chaining Based on rule of modus ponens

If know $P_{1}, \ldots, P_{n} \&$ know $\left(P_{1} \wedge \ldots \wedge P_{n}\right) \rightarrow Q$
Then can conclude Q

Backward Chaining: search
start from the query and go backwards

Analysis

- Sound?
- Complete?

Can you prove

$$
\} \mid=Q \vee \neg Q
$$

- If KB has only Horn clauses \& query is a single literal
- Forward Chaining is complete
- Runs linear in the size of the KB

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam

Conversionto cNE

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Inference 2: Resolution

[Robinson 1965]
$\{(p \vee \alpha),(\neg p \vee \beta \vee \gamma)\} \mid-R(\alpha \vee \beta \vee \gamma)$

Correctness
If $\mathrm{S} 1 \mathrm{I}_{\mathrm{R}} \mathrm{S} 2$ then $\mathrm{S} 1 \mathrm{I}=\mathrm{S} 2$
Refutation Completeness:
If S is unsatisfiable then $\left.S\right|_{R}()$

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
I = immortal
$A=$ mammal
$H=$ horned

Resolution as Search

- States?
- Operators

Model Finding

- Find assignments to variables that makes a formula true
- a CSP

Inference 3: Model Enumeration

for (m in truth assignments) \{
if (m makes Φ true)
then return "Sat!"
$\}$
return "Unsat!"

Inference 4: DPLL

(Enumeration of Partial Models)
[Davis, Putnam, Loveland \& Logemann 1962]
Version 1
dpll_1(pa) \{
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll_1 (pa $\cup\{P=0\})$) return true; return dpll_1 (pa $\cup\{P=1\}) ;$
\}

Returns true if F is satisfiable, false otherwise

DPLL Version 1

$(a \vee b \vee c)$
$(a \vee \neg b)$
$(a \vee \neg C)$
$(\neg a \vee c)$

DPLL Version 1

$(a \vee b \vee c)$
$(a \vee \neg b)$
$(a \vee \neg C)$
$(\neg a \vee c)$

DPLL Version 1

$(F \vee b \vee c)$
($\mathrm{F} \vee \neg b$)
($F \vee \neg C$)
$(T \vee C)$

DPLL Version 1

$(F \vee F \vee c)$
$(F \vee T)$
$(F \vee \neg C)$

$(T \vee c)$

DPLL Version 1

DPLL Version 1

DPLL Version 1

DPLL Version 1

DPLL as Search

- Search Space?
- Algorithm?

Improving DPLL

If literal L_{1} is true, then clause ($\left.L_{1} \vee L_{2} \vee \ldots\right)$ is true If clause C_{1} is true, then $C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots$ has the same value as $C_{2} \wedge C_{3} \wedge \ldots$

Therefore: Okay to delete clauses containing true literals!

Improving DPLL

If literal L_{1} is true, then clause ($\left.L_{1} \vee L_{2} \vee \ldots\right)$ is true If clause C_{1} is true, then $C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots$ has the same value as $C_{2} \wedge C_{3} \wedge \ldots$

Therefore: Okay to delete clauses containing true literals!
If literal L_{1} is false, then clause ($L_{1} \vee L_{2} \vee L_{3} \vee \ldots$) has the same value as ($L_{2} \vee L_{3} \vee \ldots$)

Therefore: Okay to delete shorten containing false literals!

Improving DPLL

If literal L_{1} is true, then clause ($\left.L_{1} \vee L_{2} \vee \ldots\right)$ is true If clause C_{1} is true, then $C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots$ has the same value as $C_{2} \wedge C_{3} \wedge \ldots$

Therefore: Okay to delete clauses containing true literals!
If literal L_{1} is false, then clause ($L_{1} \vee L_{2} \vee L_{3} \vee \ldots$) has the same value as $\left(L_{2} \vee L_{3} \vee \ldots\right)$

Therefore: Okay to delete shorten containing false literals!
If literal L_{1} is false, then clause $\left(L_{1}\right)$ is false
Therefore: the empty clause means false!

DPLL version 2

```
dpll_2(F, literal){
    remove clauses containing literal
    if (F contains no clauses)return true;
    shorten clauses containing _literal
    if (F contains empty clause)
        return false;
    choose V in F;
    if (dpll_2(F, ᄀV))return true;
    return dpll_2(F, V);
}
```

Partial assignment corresponding to a node is the set of chosen literals on the path from the root to the node

DPLL Version 2

$(F \vee b \vee c)$
($F \vee \neg b$)
($F \vee \neg C$)
$(T \vee C)$

DPLL Version 2

$(b \vee c)$

$(\neg b)$
$(\neg C)$

DPLL Version 2

$(F \vee c)$
(T)
$(\neg C)$

DPLL Version 2

(c)
$(\neg C)$

DPLL Version 2

(F)
(T)

DPLL Version 2

DPLL Version 2

DPLL Version 2

DPLL Version 2

Benefit

- Can backtrack before getting to leaf

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{-c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\}$ $\{a \neg b e\}\{d b\}\}$
\{\{d\}\}

- Pure Literals
- A symbol that always appears with same sign
$-\{\{a \neg b c\}\{\neg c d \neg e\}\{\neg a \neg b e\}\{d b\} \quad\{e a \neg c\}\}$ Might as well set it true! And simplify $\{\{a \neg b c\} \quad\{\neg a \neg b e\} \quad\{e a \neg c\}\}$

In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal L is true Therefore: Branch immediately on unit literals!

May view this as adding constraint propagation techniques into play

In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal L is true
Therefore: Branch immediately on unit literals!
If literal L does not appear negated in formula F, then setting
L true preserves satisfiability of F
Therefore: Branch immediately on pure literals!

May view this as adding constraint propagation techniques into play

DPLL (previous version)

 Davis - Putnam - Loveland - Logemann

 Davis - Putnam - Loveland - Logemann}
dpll(F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing \rightarrow literal
if (F contains empty clause) return false;
choose V in F;
if (dpll($\mathrm{F}, ~ \neg \mathrm{~V})$)return true; return dpll(F, V);

DPLL (for real!)

Davis - Putnam - Loveland - Logemann

dpll (F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing $\neg l i t e r a l$
if (F contains empty clause) return false;
if (F contains a unit or pure L) return dpll(F, L);
choose V in F;
if (dpll ($\mathrm{F}, ~ \neg \mathrm{~V})$) return true; return dpll(F, V);
\}

DPLL (for real)

DPLL (for real!)

Davis - Putnam - Loveland - Logemann

```
dpll(F, literal) {
    remove clauses containing literal
    if (F contains no clauses) return true;
    shorten clauses containing ~literal
    if (F contains empty clause)
        return false;
    if (F contains a unit or pure L)
        return dpll(F, L);
    choose V in F;
    if (dpll(F, \negV))return true;
    return dpll(F, V);
```


Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable - Likely to create many unit clauses
- MOM's heuristic:
- Most occurrences in clauses of minimum length

Success of DPLL

- 1962 - DPLL invented
- 1992 - 300 propositions
- 1997-600 propositions (satz)
- Additional techniques:
- Learning conflict clauses at backtrack points
- Randomized restarts
- 2002 (zChaff) 1,000,000 propositions - encodings of hardware verification problems

WalkSat (Take 1)

- Local search (Hill Climbing + Random Walk) over space of complete truth assignments
-With prob p: flip any variable in any unsatisfied clause -With prob (1-p): flip best variable in any unsat clause
- best = one which minimizes \#unsatisfied clauses
- SAT encodings of N -Queens, scheduling
- Best algorithm for random K-SAT
-Best DPLL: 700 variables
-Walksat: 100,000 variables

Refining Greedy Random Walk

- Each flip
- makes some false clauses become true
- breaks some true clauses, that become false
- Suppose $s 1 \rightarrow s 2$ by flipping x. Then:
\#unsat(s2) = \#unsat(s1) - make(s1,x) + break(s1,x)
- Idea 1: if a choice breaks nothing, it is very likely to be a good move
- Idea 2: near the solution, only the break count matters
- the make count is usually 1

Walksat (Take 2)

state = random truth assignment;
while! GoalTest(state) do
clause := random member $\{\mathrm{C} \mid \mathrm{C}$ is false in state $\}$; for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else
with probability p do
var := random member $\{x \mid x$ is in clause $\} ;$
else
$\operatorname{var}:=\arg \mathrm{x} \min \{\operatorname{break}[\mathrm{x}] \mid \mathrm{x}$ is in clause $\} ;$
endif
state[var] := 1 - state[var];
end
return state;
Put everything inside of a restart loop. Parameters: p, max_flips, max_runs

Random 3-SAT

- Random 3-SAT

- sample uniformly from space of all possible 3clauses
- n variables, I clauses
- Which are the hard instances?
- around $I / n=4.3$

Random 3-SAT

- Varying problem size, n
- Complexity peak appears to be largely invariant of algorithm
- backtracking algorithms like Davis-Putnam
- local search procedures like GSAT
- What's so special about
 4.3?

Random 3-SAT

- Complexity peak coincides with solubility transition

- $\mathrm{I} / \mathrm{n}<4.3$ problems underconstrained and SAT
- I/n > 4.3 problems overconstrained and UNSAT
- $\mathrm{I} / \mathrm{n}=4.3$, problems on "knifeedge" between SAT and UNSAT

