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Outline 

• Local search techniques and optimization 

– Hill-climbing 

– Gradient methods 

– Simulated annealing 

– Genetic algorithms 

– Issues with local search 
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Local search and optimization 

• Previous lecture: path to goal is solution to problem 
– systematic exploration of search space. 

 

• This lecture: a state is solution to problem 
– for some problems path is irrelevant. 

– E.g., 8-queens 

 

• Different algorithms can be used 
– Depth First Branch and Bound 

– Local search 
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Goal 
Satisfaction 

Optimization 

reach the goal node 

Constraint satisfaction 

optimize(objective fn) 

Constraint Optimization 

You can go back and forth between the two problems 

Typically in the same complexity class 
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Local search and optimization 
• Local search 

– Keep track of single current state 

– Move only to neighboring states 

– Ignore paths 

 

• Advantages: 
– Use very little memory 

– Can often find reasonable solutions in large or infinite (continuous) 
state spaces. 

 

• “Pure optimization” problems 
– All states have an objective function 

– Goal is to find state with max (or min) objective value 

– Does not quite fit into path-cost/goal-state formulation 

– Local search can do quite well on these problems. 
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Trivial Algorithms 

• Random Sampling 

– Generate a state randomly 

 

• Random Walk 

– Randomly pick a neighbor of the current state 

 

• Both algorithms asymptotically complete. 
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Hill-climbing (Greedy Local Search) 
max version 

function HILL-CLIMBING( problem) return a state that is a local maximum 

 input: problem, a problem 

 local variables: current, a node. 

    neighbor, a node. 

  

 current  MAKE-NODE(INITIAL-STATE[problem]) 

 loop do 

  neighbor  a highest valued successor of current 

  if VALUE [neighbor] ≤ VALUE[current] then return STATE[current] 

  current  neighbor 

 

min version will reverse inequalities and look for 
lowest valued successor 
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Hill-climbing search 

• “a loop that continuously moves towards increasing value” 
– terminates when a peak is reached 

– Aka greedy local search 

• Value can be either 
– Objective function value 

– Heuristic function value (minimized) 

 

• Hill climbing does not look ahead of the immediate neighbors  

• Can randomly choose among the set of best successors  
– if multiple have the best value 

 

• “climbing Mount Everest in a thick fog with amnesia” 
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“Landscape” of search   

Hill Climbing gets stuck in local minima 

depending on? 
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Example: n-queens 

• Put n queens on an n x n board with no two 
queens on the same row, column, or diagonal 

 

 

 

 

 

• Is it a satisfaction problem or optimization? 
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Hill-climbing search: 8-queens problem 

 
• Need to convert to an optimization problem 
• h = number of pairs of queens that are attacking each other 
• h = 17 for the above state 
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Search Space 

• State 

– All 8 queens on the board in some configuration 
 

• Successor function 

– move a single queen to another square in the 
same column. 

 

• Example of a heuristic function h(n):  

– the number of pairs of queens that are attacking 
each other 

– (so we want to minimize this) 12 



Hill-climbing search: 8-queens problem 

 

• Is this a solution? 

• What is h? 
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Hill-climbing on 8-queens 

• Randomly generated 8-queens starting states… 

• 14% the time it solves the problem 

• 86% of the time it get stuck at a local minimum 

 

• However… 

– Takes only 4 steps on average when it succeeds  

– And 3 on average when it gets stuck 

– (for a state space with 8^8  =~17 million states) 
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Hill Climbing Drawbacks 

• Local maxima 
 

 

 

• Plateaus 

 

 

• Diagonal ridges  
 

 



Escaping Shoulders: Sideways Move 

• If no downhill (uphill) moves, allow sideways moves 
in hope that algorithm can escape 

– Need to place a limit on the possible number of sideways 
moves to avoid infinite loops 

• For 8-queens 

– Now allow sideways moves with a limit of 100 

– Raises percentage of problem instances solved  from 14 to 
94% 

 

– However…. 
• 21 steps for every successful solution 

• 64 for each failure 
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Tabu Search 

• prevent returning quickly to the same state 

• Keep fixed length queue (“tabu list”) 

• add most recent state to queue; drop oldest 

• Never make the step that is currently tabu’ed 

 

• Properties:  

– As the size of the tabu list grows, hill-climbing will 
asymptotically become “non-redundant” (won’t look at the 
same state twice) 

– In practice, a reasonable sized tabu list (say 100 or so) 
improves the performance of hill climbing in many problems 17 



Escaping Shoulders/local Optima 
 Enforced Hill Climbing 

• Perform breadth first search from a local optima 

– to find the next state with better h function 

 

• Typically,  

– prolonged periods of exhaustive search 

– bridged by relatively quick periods of hill-climbing 

 

• Middle ground b/w local and systematic search 
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Hill-climbing: stochastic variations 

• Stochastic hill-climbing 
– Random selection among the uphill moves. 

– The selection probability can vary with the steepness of the uphill move. 

 

• To avoid getting stuck in local minima 
– Random-walk hill-climbing 

– Random-restart hill-climbing 

– Hill-climbing with both 
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Hill Climbing: stochastic variations 

When the state-space landscape has local 
minima, any search that moves only in the 
greedy direction cannot be complete 

 

Random walk, on the other hand, is 

    asymptotically complete 

 

Idea: Put random walk into greedy hill-climbing 
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Hill-climbing with random restarts 

• If at first you don’t succeed, try, try again! 

• Different variations 

– For each restart: run until termination vs. run for a fixed time 

– Run a fixed number of restarts or run indefinitely 
 

• Analysis 

– Say each search has probability p of success 
• E.g., for 8-queens, p = 0.14 with no sideways moves 

 

– Expected number of restarts? 

– Expected number of steps taken? 
 

• If you want to pick one local search algorithm, learn this one!! 
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Hill-climbing with random walk 

• At each step do one of the two 

– Greedy: With prob p move to the neighbor with largest value 

– Random: With prob 1-p move to a random neighbor 

 

Hill-climbing with both 

• At each step do one of the three 

– Greedy: move to the neighbor with largest value 

– Random Walk: move to a random neighbor 

– Random Restart: Resample a new current state 
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Simulated Annealing 

• Simulated Annealing = physics inspired twist on random walk 

• Basic ideas: 
– like hill-climbing identify the quality of the local improvements 

– instead of picking the best move, pick one randomly  

– say the change in objective function is d 

– if d is positive, then move to that state 

– otherwise:  

• move to this state with probability proportional to d 

• thus: worse moves (very large negative d) are executed less often 

– however, there is always a chance of escaping from local maxima 

– over time, make it less likely to accept locally bad moves 

– (Can also make the size of the move random as well, i.e., allow “large” 
steps in state space) 
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Physical Interpretation of Simulated Annealing 

• A Physical Analogy: 

• imagine letting a ball roll downhill on the function surface  
– this is like hill-climbing (for minimization) 

• now imagine shaking the surface, while the ball rolls, 
gradually reducing the amount of shaking 
– this is like simulated annealing 

 

• Annealing = physical process of cooling a liquid or metal 
until particles achieve a certain frozen crystal state 

• simulated annealing: 
–  free variables are like particles 

–  seek “low energy” (high quality) configuration 

– slowly reducing temp. T with particles moving around randomly 
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Simulated annealing 
function SIMULATED-ANNEALING( problem, schedule) return a solution state 

 input: problem, a problem 

  schedule, a mapping from time to temperature 

 local variables: current, a node. 

    next, a node. 

   T, a “temperature” controlling the prob. of downward steps 

  

 current  MAKE-NODE(INITIAL-STATE[problem]) 

 for t  1 to ∞ do 

  T  schedule[t] 

  if T = 0 then return current 

  next  a randomly selected successor of current 

  ∆E   VALUE[next] - VALUE[current] 

  if ∆E > 0 then current  next  

  else current  next only with probability e∆E /T 
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Temperature T 

• high T: probability of “locally bad” move is higher 

• low T: probability of “locally bad” move is lower 

• typically, T is decreased as the algorithm runs longer 

• i.e., there is a “temperature schedule” 
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Simulated Annealing in Practice 

– method proposed in 1983 by IBM researchers for 
solving VLSI layout problems (Kirkpatrick et al, 
Science, 220:671-680, 1983). 

• theoretically will always find the global optimum 

 
– Other applications: Traveling salesman, Graph 

partitioning, Graph coloring, Scheduling, Facility 
Layout, Image Processing, … 
 

– useful for some problems, but can be very slow 

• slowness comes about because T must be decreased 
very gradually to retain optimality 
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Local beam search 
• Idea: Keeping only one node in memory is an 

extreme reaction to memory problems. 

 

• Keep track of k states instead of one 

– Initially: k randomly selected states 

– Next: determine all  successors of k states 

– If any of successors is goal  finished 

– Else select k best  from successors and repeat 
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Local Beam Search (contd) 

• Not the same as k random-start searches run in parallel! 

• Searches that find good states recruit other searches to 
join them 

 

• Problem: quite often, all k states end up on same local hill 

• Idea: Stochastic beam search 

– Choose k successors randomly, biased towards good ones 

 

• Observe the close analogy to natural selection! 
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Hey! Perhaps 
sex can improve 

search? 
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Sure! Check out 
ye book. 
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Genetic algorithms 
• Twist on Local Search: successor is generated by combining two parent states 

 
• A state is represented as a string over a finite alphabet (e.g. binary) 

– 8-queens 
• State = position of 8 queens each in a column 
   

• Start with k randomly generated states (population) 
 

• Evaluation function (fitness function):   
– Higher values for better states. 
– Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens 

 
• Produce the next generation of states by “simulated evolution” 

– Random selection 
– Crossover 
– Random mutation 

32 



8 

7 

6 

5 

4 

3 

2 

1 

String representation 

16257483 

Can we evolve 8-queens through genetic algorithms? 
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Evolving 8-queens 

? 

Sorry!     
Wrong queens 
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Genetic algorithms 

 

 

 
 

 

 

 

• Fitness function: number of non-attacking pairs of queens (min = 0, max = 
8 × 7/2 = 28) 

• 24/(24+23+20+11) = 31% 

• 23/(24+23+20+11) = 29% etc 

4 states for 
8-queens  
problem 

2 pairs of 2 states 
randomly selected based 
on fitness. Random 
crossover points selected 
 

New states 
after crossover 

Random 
mutation 
applied 
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Genetic algorithms 

Has the effect of “jumping” to a completely different new 
part of the search space (quite non-local) 
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Comments on Genetic Algorithms 

• Genetic algorithm is a variant of “stochastic beam search”   
 

• Positive points 
– Random exploration can find solutions that local search can’t 

• (via crossover primarily) 

– Appealing connection to human evolution 

• “neural” networks, and “genetic” algorithms are metaphors! 
 

• Negative points 
– Large number of “tunable” parameters 

• Difficult to replicate performance from one problem to another  

– Lack of good empirical studies comparing to simpler methods 

– Useful on some (small?) set of problems but no convincing evidence 
that GAs are better than hill-climbing w/random restarts in general 
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Optimization of Continuous Functions 

• Discretization 

– use hill-climbing 

 

• Gradient descent 

– make a move in the direction of the gradient 

• gradients: closed form or empirical 
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Gradient Descent 
Assume we have a continuous function: f(x1,x2,…,xN)  
 and we want minimize over continuous variables X1,X2,..,Xn 
 

 

1. Compute the gradients  for all i: f(x1,x2,…,xN) /xi 
 
2. Take a small step downhill in the direction of the gradient: 
 

  xi  xi - λf(x1,x2,…,xN) /xi 
 
 
3. Repeat. 

• How to select λ 

– Line search: successively double 

– until f starts to increase again 
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