Uninformed Search

Chapter 3

(Based on slides by Stuart Russell, Dan Weld, Oren Etzioni, Henry Kautz, and other UW-AI faculty)
What is Search?

- Search is a class of techniques for systematically finding or constructing solutions to problems.
 - Example technique: generate-and-test.
 - Example problem: Combination lock.

1. Generate a possible solution.
2. Test the solution.
3. If solution found THEN done ELSE return to step 1.
Search thru a Problem Space/State Space

Input:

- Set of states
- Operators [and costs]
- Start state
- Goal state [test]

Output:

- Path: start \Rightarrow a state satisfying goal test
- [May require shortest path]
Why is search interesting?

• Many (all?) AI problems can be formulated as search problems!

• Examples:
 • Path planning
 • Games
 • Natural Language Processing
 • Machine learning
 • …
Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?
Example: The 8-puzzle

- **states?** locations of tiles
- **actions?** move blank left, right, up, down
- **goal test?** = goal state (given)
- **path cost?** 1 per move
- [Note: optimal solution of n-Puzzle family is NP-hard]
Search Tree Example:
Fragment of 8-Puzzle Problem Space
Example: robotic assembly

- **states?**: real-valued coordinates of robot joint angles parts of the object to be assembled
- **actions?**: continuous motions of robot joints
- **goal test?**: complete assembly
- **path cost?**: time to execute
Example: Romania

• On holiday in Romania; currently in Arad.
• Flight leaves tomorrow from Bucharest
•
 • Formulate goal:
 – be in Bucharest
 –
 • Formulate problem:
 – states: various cities
 – actions: drive between cities
 –
 • Find solution:
 – sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
 –
Example: N Queens

• Input:
 – Set of states
 – Operators [and costs]
 – Start state
 – Goal state (test)

• Output
Implementation: states vs. nodes

- A **state** is a (representation of) a physical configuration
- A **node** is a data structure constituting part of a search tree includes state, parent node, action, path cost $g(x)$, depth

The **Expand** function creates new nodes, filling in the various fields and using the **SuccessorFn** of the problem to create the corresponding states.
Search strategies

- A search strategy is defined by picking the order of node expansion.
- Strategies are evaluated along the following dimensions:
 - **completeness**: does it always find a solution if one exists?
 - **time complexity**: number of nodes generated
 - **space complexity**: maximum number of nodes in memory
 - **optimality**: does it always find a least-cost solution?
 - **systematicity**: does it visit each state at most once?

- Time and space complexity are measured in terms of:
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)
Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition

- Breadth-first search

- Depth-first search

- Depth-limited search

- Iterative deepening search
Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!
Depth First Search

- Maintain stack of nodes to visit
- Evaluation
 - Complete? Yes except for infinite spaces
 - Time Complexity? $O(b^m)$
 - Space Complexity? $O(bm)$

http://www.youtube.com/watch?v=dtoFAvtVE4U
Breadth First Search: shortest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)
 - Time Complexity? $O(b^d)$
 - Space Complexity? $O(b^d)$
 - Optimal? Yes, if stepcost=1
Uniform Cost Search: cheapest first

- Maintain queue of nodes to visit
- Evaluation
 - Complete? Yes (b is finite)
 - Time Complexity? $O(b^{(C^*/e)})$
 - Space Complexity? $O(b^{(C^*/e)})$
 - Optimal? Yes

http://www.youtube.com/watch?v=z6IUnb9ktkE
Memory Limitation

• Suppose:
 2 GHz CPU
 1 GB main memory
 100 instructions / expansion
 5 bytes / node

 200,000 expansions / sec
 Memory filled in 100 sec ... < 2 minutes
Idea 1: Beam Search

• Maintain a constant sized frontier
• Whenever the frontier becomes large
 – Prune the worst nodes

Optimal: no
Complete: no
Idea 2: Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure

inputs: problem, a problem

for depth ← 0 to ∞ do
    result ← DEPTH-LIMITED-SEARCH(problem, depth)
    if result ≠ cutoff then return result
```
Iterative deepening search / = 0

Limit = 0
Iterative deepening search / $l = 1$
Iterative deepening search \(l = 2 \)
Iterative deepening search / = 3

Limit = 3
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{IDS} = (d+1)b^0 + db^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d \]

- For $b = 10$, $d = 5$,
 \begin{itemize}
 \item $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 \item $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$
 \end{itemize}

- Overhead = \[
\frac{(123,456 - 111,111)}{111,111} = 11\%
\]
iterative deepening search

- **Complete?** Yes
- **Time?**
 - \((d+1)b^0 + d b^1 + (d-1)b^2 + ... + b^d = O(b^{d+1})\)
- **Space?**
 - \(O(bd)\)
- **Optimal?**
 - Yes, if step cost = 1
 - Can be modified to explore uniform cost tree (iterative lengthening)
- **Systematic?**
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{[C^*/\epsilon]})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Forwards vs. Backwards
When is bidirectional search applicable?

- Generating predecessors is easy
- Only 1 (of few) goal states
Bidirectional search

• **Complete?** Yes

• **Time?**
 – $O(b^{d/2})$

• **Space?**
 – $O(b^{d/2})$

• **Optimal?**
 – Yes if uniform cost search used in both directions

• **Systematic?**
 – Yes
Problem

• All these methods are slow (blind)

• Solution → add guidance ("heuristic estimate")
 → “informed search”