CSE 573: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

- **Blind Search**
 - DFS, BFS, IDS

- **Informed Search**
 - Systematic: Uniform cost, greedy, A*, IDA*
 - Stochastic: Hill climbing w/ random walk & restarts

- **Constraint Satisfaction**
 - Adversary Search
 - Min-max, alpha-beta, expectimax, MDPS...

Recap: Search Problem

- **States**
 - configurations of the world

- **Successor function:**
 - function from states to lists of triples
 - (state, action, cost)

- **Start state**

- **Goal test**

Constraint Satisfaction Problems

- Subset of search problems

- State is *factored* - defined by
 - Variables X, with values from a
 - Domain D (often D depends on i)

- **Goal test is a set of constraints**

WHY STUDY?

- Simple example of a *formal representation language*
- Allows more powerful search algorithms

Example: Map-Coloring

- **Variables:**
 - WA, NT, Q, NSW, V, SA, T

- **Domain:**
 - \(D = \{\text{red}, \text{green}, \text{blue}\}\)

- **Constraints:** adjacent regions must have different colors
 - \(WA \neq NT\)
 - \(\{(WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\}\}\)

- **Solutions are assignments satisfying all constraints**, e.g.:
 - \(\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}\)
Constraint Graphs
- Binary CSP: each constraint relates (at most) two variables.
- Binary constraint graph: nodes are variables, arcs show constraints.
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Real-World CSPs
- Assignment problems: e.g., who teaches what class.
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration.
- Gate assignment in airports.
- Transportation scheduling.
- Factory scheduling.
- Fault diagnosis.
- ... lots more!
- Many real-world problems involve real-valued variables...

Example: Sudoku
- Variables:
 - Each (open) square
- Domains:
 - \{1, 2, ..., 9\}
- Constraints:
 - 9-way alldiff for each row
 - 9-way alldiff for each column
 - 9-way alldiff for each region

Example: Cryptarithmetic
- Variables (circles):
- Domains:
 - \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 - alldiff(F, T, U, W, R, O)
 - \(O + O = R + 10 \cdot X_1\)
 - ...

Example: N-Queens
- CSP Formulation 1:
 - Variables: \(X_{ij}\)
 - Domains: \{0, 1\}
 - Constraints
 - \(\forall i, j, k: X_{i,j} + X_{j,k} \leq 1\)
 - \(\forall i, j, k: X_{i,j} + X_{i+k,j+k} \leq 1\)
 - \(\forall i, j, k: X_{i,j} + X_{i+k,j-k} \leq 1\)
 - \(\forall i, j: X_{i,j} \leq 1\)
 - \(\sum_{i,j} X_{i,j} = N\)
Example: N-Queens

- CSP Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints
 \[\forall i, j, k \quad (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\forall i, j, k \quad (X_{ij}, X_{ij+k}) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\forall i, j, k \quad (X_{ij}, X_{ij+k}+k) \in \{(0, 0), (0, 1), (1, 0)\} \]
 \[\sum_{i,j} X_{ij} = N \]

Example: N-Queens

- Formulation 2:
 - Variables: Q_i
 - Domains: $\{1, 2, 3, \ldots, N\}$
 - Constraints:
 - Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\} \ldots$

Chinese Constraint Network

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - "General position": no junctions change with small movements of the eye.

- Then each line on image is one of the following:
 - Boundary line (edge of an object) (>) with right hand of arrow denoting "solid" and left hand denoting "space"
 - Interior convex edge (+)
 - Interior concave edge (-)

Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- Variables: vertices
- Domains: junction labels
- Constraints: both ends of a line should have the same label
Local vs Global Consistency

Varieties of CSPs
- **Discrete Variables**
 - Finite domains
 - Size d^i means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints
- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[
 S \neq \text{green}
 \]
 - Binary constraints involve pairs of variables:
 \[
 S \neq W \quad A
 \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmic column constraints
- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

CSPs as Search?
- States?
- Successor function?
- Start state?
- Goal test?

Standard Search Formulation
- States are defined by the values assigned so far
- Initial state: the empty assignment, {}?
- Successor function:
 - assign value to an unassigned variable
- Goal test:
 - the current assignment is complete &
 - satisfies all constraints

Backtracking Example
Backtracking Search

- Note 1: Only consider a single variable at each point
 - Variable assignments are commutative, so **fix ordering of variables**
 - i.e., \([\text{WA} = \text{red} \text{ then } \text{NT} = \text{blue}]\) same as \([\text{NT} = \text{blue} \text{ then } \text{WA} = \text{red}]\)
 - What is **branching factor** of this search?

Backtracking Search

- Note 2: Only allow legal assignments at each point
 - i.e. Ignore values which conflict previous assignments
 - Might need some computation to eliminate such conflicts
 - “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas
- One variable at a time, fixed order
- Only trying consistent assignments

Is called “Backtracking Search”
- Basic uninformed algorithm for CSP
- Can solve n-queens for \(n = 25\)

Improving Backtracking

General-purpose ideas give huge gains in speed
- **Ordering:**
 - Which variable should be assigned next?
 - In what order should its values be tried?
- **Filtering:** Can we detect inevitable failure early?
- **Structure:** Can we exploit the problem structure?

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Forward Checking

Prune inconsistent values

Possible values

No values left!
Forward Checking Cuts the Search Space

Are We Done?

Constraint Propagation
- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency
- Simplest form of propagation makes each arc consistent:
 - $X - Y$ is consistent if for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
 - Can be run as a preprocessor or after each assignment

Arc Consistency

Function: $\text{ArcConsistency}(\text{csp})$ returns true if csp is arc consistent.

Function: $\text{ReduceInconsistentValues}(X, Y)$ returns true if csp is inconsistent.

Limitations of Arc Consistency
- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Runtime: $O(nm^2)$, can be reduced to $O(nm^3)$

... but detecting all possible future problems is NP-hard – why?
K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute

Variable Ordering Heuristics

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
 - Why min rather than max?
 - Also called “most constrained variable”
 - "Fail-fast" ordering

Ordering: Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
- Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in n
 - E.g., n = 80, d = 2, c = 20
 - \(2^{20} = 4 \) billion years at 10 million nodes/sec
 - \(4(\times 2^{20}) = 0.4 \) seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
 - For \(i = n : 2 \), apply \(\text{RemoveInconsistent}(\text{Parent}(X_i),X_i) \)
 - For \(i = 1 : n \), assign \(X_i \) consistently with \(\text{Parent}(X_i) \)
- Runtime: \(O(n d^2) \)
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time!
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O\left((d^c)(n-c) d^2\right)$, very fast for small c

Local Search for CSPs

- Greedy and stochastic methods typically search over “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection heuristic:
 - Min-conflicts
 - Choose value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = \text{number of attacks}$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for large n (e.g., 10,000,000) with high probability
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $\frac{R}{c}$

CSP Summary

- CSPs are a special (factored) kind of search problem:
 - States defined by values (domains) of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = DFS - one legal variable assigned per node
- Variable ordering and value selection heuristics help
- Forward checking prevents assignments that fail later
- Constraint propagation (e.g., arc consistency)
 - does additional work to constrain values and detect inconsistencies
- Constraint graph representation
 - Allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Local (stochastic) search often effective in practice:
 - Iterative min-conflicts