Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - Aka graphical model
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

Formally:

- A set of nodes, one per random variable
- Directed edges, forming an acyclic graph
- A CPT for each node
 - CPT = “Conditional Probability Table”
 - Collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]

A Bayes Net = Topology (graph) + Local Conditional Probabilities

Hidden Markov Models

- An HMM is defined by:
 - Initial distribution: \[P(X_1) \]
 - Transitions: \[P(X_i|X_{i-1}) \]
 - Emissions: \[P(E|X) \]
Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
 - Does this always work? Why?
 - Not every BN can represent every joint distribution
 - The topology enforces certain independence assumptions
 - Compare to the exact decomposition according to the chain rule!

Example: Independent Coin Flips

- N independent coin flips
 - \(X_1, X_2, \ldots, X_n \)
 - \[P(X_1) = \begin{cases} h & 0.5 \\ t & 0.5 \end{cases} \]
 - \[P(X_2) = \begin{cases} h & 0.5 \\ t & 0.5 \end{cases} \]
 - \[P(X_n) = \begin{cases} h & 0.5 \\ t & 0.5 \end{cases} \]
 - \[P(X_1, X_2, \ldots, X_n) = 2^{n-1} \]
 - No interactions between variables

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
 \[\forall x, y, z : P(x|z, y) = P(x|z) \]
 - What about fire, smoke, alarm?

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!
- How big is joint distribution?
 - \[2^n - 1 = 31 \] parameters

Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>¬b</td>
<td>0.999</td>
<td>¬e</td>
<td>0.999</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|-----|-----|-------|
| +a | +j | 0.9 |
| +a | ¬j | 0.1 |
| ¬a | +j | 0.05 |
| ¬a | ¬j | 0.95 |

| A | M | P(M|A) |
|-----|-----|-------|
| +a | +m | 0.7 |
| +a | ¬m | 0.3 |
| ¬a | +m | 0.01 |
| ¬a | ¬m | 0.99 |

| A | M | P(A|B,E) |
|-----|-----|---------|
| +a | +e | +α | 0.95 |
| +a | +e | ¬α | 0.05 |
| +b | +e | +α | 0.94 |
| +b | +e | ¬α | 0.06 |
| +b | ¬e | +α | 0.29 |
| +b | ¬e | ¬α | 0.71 |
| ¬b | +e | +α | 0.001 |
| ¬b | +e | ¬α | 0.999 |
| ¬b | ¬e | +α | 0.001 |
| ¬b | ¬e | ¬α | 0.999 |
Example: Traffic II

- Let’s build a graphical model

- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Changing Bayes’ Net Structure

- The same joint distribution can be encoded in many different Bayes’ nets

- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don’t make any false conditional independence assumptions

Example: Independence

- For this graph, you can fiddle with \((\text{the CPTs}) \) all you want, but you won’t be able to represent any distribution in which the flips are dependent!

 \[
 \begin{array}{c|c}
 \text{X}_1 & \text{X}_2 \\
 \text{P} & 0.5 & 0.5 \\
 \text{h} & 0.5 & h \\
 \text{t} & 0.5 & t \\
 \end{array}
 \]

Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

 \[
 \begin{array}{c|c}
 \text{X}_1 & \text{X}_2 \\
 \text{P} & 0.5 & 0.5 \\
 \text{h} & 0.5 & h \\
 \text{t} & 0.5 & t \\
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 \text{X}_1 & \text{X}_2 | \text{X}_1 \\
 \text{h} & h | 0.5 & t | 0.5 \\
 \text{t} & t | 0.5 & h | 0.5 \\
 \end{array}
 \]

 - Adding unneeded arcs isn’t wrong, it’s just inefficient

Topology Limits Distributions

- Given some graph topology \(G \), only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

 \[
 \text{X} \rightarrow \text{Y} \rightarrow \text{Z}
 \]

 Question: are \(X \) and \(Z \) independent?
 - Answer: no.
 - Example: low pressure causes rain, which causes traffic.
 - Knowledge about \(X \) may change belief in \(Z \)
 - Knowledge about \(Z \) may change belief in \(X \) (via \(Y \))
 - Addendum: they could be independent: how?
Causal Chains

- This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

- Is X independent of Z given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y) \]

Yes!

Evidence along the chain “blocks” the influence

Common Parent

- Another basic configuration: two effects of the same parent

X: Low pressure
Y: Rain
Z: Traffic

- Are X and Z independent?

Yes!

Evidence along the chain “blocks” the influence

Common Parent

- Another basic configuration: two effects of the same parent

Y: Project due
X: Forum busy
Z: Lab full

- Are X and Z independent?

Yes!

Evidence along the chain “blocks” the influence

Common Effect

- Last configuration: two causes of one effect (v-structures)

Y: Traffic
X: Raining
Z: Ballgame

- Are X and Z independent?

Yes: the ballgame and the rain cause traffic, but they are not correlated
Still need to prove they must be (try it!)

- Are X and Z independent given Y?

No: seeing traffic puts the rain and the ballgame in competition as explanation!
This is backwards from the other cases
- Observing the cause blocks influence between effects.

The General Case

- Any complex example can be analyzed using these three canonical cases

- General question: in a given BN, are two variables independent (given evidence)?

- Solution: analyze the graph
Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars \(\{Z\} \)?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain \(A \rightarrow B \rightarrow C \) where B is unobserved (either direction)
 - Common cause \(A \leftarrow B \rightarrow C \) where B is unobserved
 - Common effect (aka v-structure) \(A \rightarrow B \leftarrow C \) where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Example: Independent?

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - \(R \perp T \) Yes
 - \(R \perp B \) Yes
 - \(R \perp B | T \) No
 - \(R \perp B | T' \) No
 - \(L \perp B | T \) Yes
 - \(L \perp B | T' \) No
 - \(L \perp B | T, R \) Yes

Given Markov Blanket, X is Independent of All Other Nodes

\[MB(X) = \text{Par}(X) \cup \text{Childs}(X) \cup \text{Par}(\text{Childs}(X)) \]
Summary

- Bayes nets compactly encode joint distributions (JDS)
- Other graphical models too: factor graphs, CRFs, …
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes’ net’s JD may have further (conditional) independence known only from specific CPTs

Outline

- Probabilistic models (and inference)
 - Bayesian Networks (BNs)
 - Independence in BNs
 - Efficient Inference in BNs
 - Learning

Inference in BNs

This graphical independence representation yields efficient inference schemes

- We generally want to compute
 - Marginal probability: \(P(Z) \)
 - \(P(Z|E) \) where \(E \) is (conjunctive) evidence
 - \(Z \): query variable(s),
 - \(E \): evidence variable(s)
 - everything else: hidden variable
 - Computations organized by network topology

\[
P(B | J=true, M=true) = \alpha \sum_{e,a} P(b, j, m, e, a)
\]

\[
P(b|m) = \alpha \sum_e P(b, e) \sum_a P(j|a) P(m|a)
\]

Variable Elimination

\[
P(b,j,m) = \alpha \sum_e P(b, e) \sum_a P(a, e) P(j|a) P(m|a)
\]

Repeated computations \(\rightarrow\) Dynamic Programming
Reducing 3-SAT to Bayes Nets

- **Theorem**: Inference in a multi-connected Bayesian network is NP-hard.

Boolean 3CNF formula $\phi = (w \lor \neg w \lor w) \land (u \lor \neg u \lor y)$

Bayes Net is a generative model
- We can easily generate samples from the distribution represented by the Bayes net
 - Generate one variable at a time in topological order

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese and Daphne Koller)

Bayes Net is a generative model

- We can easily generate samples from the distribution represented by the Bayes net
 - Generate one variable at a time in topological order

Stochastic simulation $P(B|C)$

Use the samples to compute probabilities, say $P(c)$ or $P(nc)$
Rejection Sampling

- Sample from the prior
- Reject if do not match the evidence
- Returns consistent posterior estimates
- Hopelessly expensive if \(P(e) \) is small
- \(P(e) \) drops exponentially with num of evidence vars

Likelihood Weighting

Idea:
- Fix evidence variables
- Sample only non-evidence variables
- Weight each sample by the likelihood of evidence
Likelihood weighting $P(B|C)$

<table>
<thead>
<tr>
<th>Event</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burglary</td>
<td>0.8</td>
</tr>
<tr>
<td>Earthquake</td>
<td>0.05</td>
</tr>
<tr>
<td>Alarm</td>
<td>0.2</td>
</tr>
<tr>
<td>Cold</td>
<td>0.7</td>
</tr>
<tr>
<td>NewsCast</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Samples:

- B, E, A, C, N
- b, e, a, c, n

- $P(b) = \frac{\text{weight of samples with } B=b}{\text{total weight of samples}}$

Likelihood Weighting

- Sampling probability: $S(z,e) = \prod_i P(z_i | \text{Parents}(Z_i))$
 - Neither prior nor posterior
- Weight for a sample $<z,e>$: $w(z,e) = \prod_i P(x_i | \text{Parents}(E_i))$
- Weighted Sampling probability $S(z,e)w(z,e) = \prod_i P(z_i | \text{Parents}(Z_i)) \prod_i P(x_i | \text{Parents}(E_i))$
- $= P(z,e)$
 - returns consistent estimates
 - performance degrades w/ many evidence vars
 - a few samples get majority of the weight
 - late occurring evidence vars don’t guide sample generation

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:
 1. Pick a variable X
 2. Calculate $P(X=\text{true} \ | \ \text{all other variables})$
 3. Set X to true with that probability
- Repeat many times. Frequency with which any variable Y is true = its posterior probability.
- Converges to true posterior when frequencies stop changing significantly
 - stable distribution, mixing

Given Markov Blanket, X is Independent of All Other Nodes

$MB(X) = \text{Par}(X) \cup \text{Childs}(X) \cup \text{Par(Childs}(X))$

Markov Blanket Sampling

- How to calculate $P(X=\text{true} \ | \ \text{all other variables})$?
 - Recall: a variable is independent of all others given it’s Markov Blanket
 - parents
 - children
 - other parents of children
 - So problem becomes calculating $P(X=\text{true} \ | MB(X))$
 - Fortunately, it is easy to solve exactly
 $P(X) = \alpha P(X \ | Parents(X)) \prod_{\text{ForChilds}(X)} P(Y \ | Parents(Y))$

Example

$P(X) = \alpha P(X \ | Parents(X)) \prod_{\text{ForChilds}(X)} P(Y \ | Parents(Y))$

$P(X \ | A, B, C) = \frac{P(X, A, B, C)}{P(A, B, C)}$

$= \frac{P(A)P(X \ | A)P(C)P(B \ | X, C)}{P(A, B, C)}$

$= \frac{P(A)P(C)}{P(A, B, C)} P(X \ | A) P(B \ | X, C)$

$= \alpha P(X \ | A) P(B \ | X, C)$
Example

- Evidence: s, b
- Randomly set: h, g
- Sample H using P(H|s,g,b)
- Suppose result is ~h

Sample G using P(G|s,~h,b)
Example

- Evidence: s, b
- Randomly set: ~h, g
- Sample H using P(H|s,g,b)
 Suppose result is ~h
 Sample G using P(G|s,~h,b)
 =>Suppose result is g
 Sample G using P(G|s,~h,b)

Gibbs MCMC Summary

\[
Pr(X|E) = \frac{\text{number of samples with } X=x}{\text{total number of samples}}
\]

- Advantages:
 - No samples are discarded
 - No problem with samples of low weight
 - Can be implemented very efficiently
 - 10K samples @ second

- Disadvantages:
 - Can get stuck if relationship between vars is deterministic
 - Many variations devised to make MCMC more robust

Other inference methods
- Exact inference
 - Junction tree

- Approximate inference
 - Belief Propagation
 - Variational Methods

Outline
- Probabilistic models
 - Bayesian Networks (BNs)
 - Independence in BNs
 - Efficient Inference in BNs
 - Learning