Recap: Search Problem

- **States**
 - configurations of the world
- **Successor function**:
 - function from states to lists of (state, action, cost) triples
- **Start state**
- **Goal test**

General Graph Search Paradigm

```plaintext
function tree-search(root-node)
  fringe  successors(root-node)
  explored  empty
  while ( notempty(fringe) )
    node  remove-first(fringe)
    state  state(node)
    if goal-test(state) return solution(node)
    explored  explored  {node}
    fringe  fringe  (successors(node) - explored)
  return failure
end tree-search
```

Fringe = priority queue, ranked by heuristic

Often: \(f(x) = g(x) + h(x) \)

Which Algorithm?

- Uniform cost search
- \(A^* \) using Manhattan
- Best-first search using Manhattan
Heuristics

It’s what makes search actually work

Admissible Heuristics

- $f(x) = g(x) + h(x)$
- g: cost so far
- h: underestimate of remaining costs

Where do heuristics come from?

Relaxed Problems

- Derive admissible heuristic from exact cost of a solution to a relaxed version of problem
 - For transportation planning, relax requirement that car has to stay on road → Euclidean dist
 - For blocks world, distance = # move operations heuristic = number of misplaced blocks
- What is relaxed problem?

 # out of place = 2, true distance to goal = 3

 Cost of optimal soln to relaxed problem ≤ cost of optimal soln for real problem

Example: Pancake Problem

Action: Flip over the top n pancakes

Cost: Number of pancakes flipped
Goal: Pancakes in size order

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. Gates
Microsoft, Albuquerque, New Mexico

Charitos H. Papadimitriou

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1979.
Revised 20 August 1979.

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let (n) be the largest such $f(\sigma)$ for all σ in the symmetric group S_n. We show that $f(\sigma) \leq \lceil \frac{3n}{2} \rceil$, and that $f(\sigma) \leq \lceil \frac{7n}{5} \rceil$ for n a multiple of 16. Furthermore, each integer is required to participate in at most n prefix reversals, the corresponding function $g(\sigma)$ is shown to obey $3g(\sigma) \leq g(\sigma) + 3n$.
Example: Pancake Problem

State space graph with costs as weights

Example: Heuristic Function

Heuristic: $h(x) = \text{the largest pancake that is still out of place}$

What is being relaxed?

Counterfeit Coin Problem

- Twelve coins
- One is counterfeit: maybe heavier, maybe light
- Objective:
 - Which is phony & is it heavier or lighter?
 - Max three weighings

Coins

- State = coin possibilities
- Action = weighing two subsets of coins
- Heuristic?
 - What is being relaxed?

Traveling Salesman Problem

Path =
1) Graph
2) Degree 2 (except ends, degree 1)
3) Connected

Kruskal's Algo: (Greedily add cheapest useful edges)

Traveling Salesman Problem

What can be relaxed?

Relax degree constraint
Assume can teleport to past nodes on path

Minimum spanning tree

Kruskal's Algorithm: $O(n^2)$
(Greedily add cheapest useful edges)
Traveling Salesman Problem

What can be relaxed?

Relax connected constraint

Cheapest degree 2 graph

Optimal assignment $O(n^2)$

Automated Generation of Relaxed Problems

- Need to reason about search problems
- Represent search problems in formal language

Planning

I have a plan - a plan that cannot possibly fail.
- Inspector Clousseau

Classical Planning

- Given
 - a logical description of the initial situation,
 - a logical description of the goal conditions, and
 - a logical description of a set of possible actions,
- Find
 - a sequence of actions (a plan of actions) that brings us from the initial situation to a situation in which the goal conditions hold.

Example: BlocksWorld

Planning Input:
State Variables/Propositions

- Types: block --- a, b, c
- (on-table a) (on-table b) (on-table c)
- (clear a) (clear b) (clear c)
- (arm-empty)
- (holding a) (holding b) (holding c)
- (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

No. of state variables = 16
No. of states = 2^{16}
No. of reachable states = ?
Planning Input: Actions

- pickup a b, pickup a c, ...
- place a b, place a c, ...
- pickup-table a, pickup-table b, ...
- place-table a, place-table b, ...

Total: 6 + 6 + 3 + 3 = 18 “ground” actions
Total: 4 action schemata

Planning Input: Actions (contd)

- :action pickup ?b1 ?b2
 :precondition
 (on ?b1 ?b2)
 (clear ?b1)
 (arm-empty)

- :effect
 (holding ?b1)
 (not (on ?b1 ?b2))
 (clear ?b2)
 (not (arm-empty))

Planning Input: Initial State

- (on-table a) (on-table b)
- (arm-empty)
- (clear c) (clear b)
- (on c a)

- All other propositions false
 - not mentioned → assumed false
 - “Closed world assumption”

Planning Input: Goal

- (on-table c) AND (on b c) AND (on a b)

- Is this a state?

- In planning a goal is a set of states
 - Like the goal test in problem solving search
 - But specified declaratively (in logic) rather than with code

Specifying a Planning Problem

- Description of initial state of world
 - Set of propositions

- Description of goal:
 - E.g., Logical conjunction
 - Any world satisfying conjunction is a goal

- Description of available actions

Forward State-Space Search

- Initial state: set of positive ground literals
 - CWA: literals not appearing are false

- Actions:
 - applicable if preconditions satisfied
 - add positive effect literals
 - remove negative effect literals

- Goal test: does state logically satisfy goal?
- Step cost: typically 1
Heuristics for State-Space Search

- Count number of false goal propositions in current state
 - Admissible?
 - NO
- Subgoal independence assumption:
 - Cost of solving conjunction is sum of cost of solving each subgoal independently
 - Optimistic: ignores negative interactions
 - Pessimistic: ignores redundancy
- Admissible? No
- Can you make this admissible?

Importance of Heuristics

- h_1 = number of tiles in wrong place
- $h_2 = \sum$ distances of tiles from correct loc

Combining Admissible Heuristics

- Can always take max
- Could add several heuristic values
 - Doesn’t preserve admissibility in general

Heuristics for eight puzzle

- Start: 7 2 3 5 1 6 8
- Goal: 1 2 3 4 5 6 7 8

What can we relax?

Importance of Heuristics (contd)

- Delete all preconditions from actions, solve easy relaxed problem, use length
 - Admissible?
 - YES

- :action pickup-table ?b
 - :precondition (and (on-table ?b) (clear ?b) (arm-empty))
 - :effect (and (holding ?b) (not (on-table ?b)) (not (arm-empty)))

Decrease effective branching factor
Performance of IDA* on 15 Puzzle

- Random 15 puzzle instances were first solved optimally using IDA* with Manhattan distance heuristic (Korf, 1985).
- Optimal solution lengths average 53 moves.
- 400 million nodes generated on average.
- Average solution time is about 50 seconds on current machines.

Limitation of Manhattan Distance

- Solving a 24-Puzzle instance,
 - IDA* with Manhattan distance …
 - 65,000 years on average.
- Assumes that each tile moves independently
- In fact, tiles interfere with each other.
- Accounting for these interactions is the key to more accurate heuristic functions.

Example: Linear Conflict

3 1

1 3

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

3 1

1 3

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

3 1

1 3

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

3 1

1 3

Manhattan distance is 2+2=4 moves
Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

Manhattan distance is 2+2=4 moves, but linear conflict adds 2 additional moves.

Linear Conflict Heuristic

- Hansson, Mayer, and Yung, 1991
- Given two tiles in their goal row, but reversed in position, additional vertical moves can be added to Manhattan distance.
- Still not accurate enough to solve 24-Puzzle
- We can generalize this idea further.

Pattern Database Heuristics

- Culberson and Schaeffer, 1996
- A pattern database is a complete set of such positions, with associated number of moves.
- E.g. a 7-tile pattern database for the Fifteen Puzzle contains 519 million entries.

Heuristics from Pattern Databases

31 moves is a lower bound on the total number of moves needed to solve this particular state.
Precomputing Pattern Databases

- Entire database is computed with one backward breadth-first search from goal.
- All non-pattern tiles are indistinguishable,
 - But all tile moves are counted.
- The first time each state is encountered, the total number of moves made so far is stored.
- Once computed, the same table is used for all problems with the same goal state.

Combining Multiple Databases

- Overall heuristic is maximum of 31 moves
- 31 moves needed to solve red tiles
- 22 moves need to solve blue tiles

Drawbacks of Standard Pattern DBs

- Since we can only take \(\text{max} \)
 - Diminishing returns on additional DBs
- Would like to be able to add values

Additive Pattern Databases

- Culberson and Schaeffer counted all moves needed to correctly position the pattern tiles.
- In contrast, we could count only moves of the pattern tiles, ignoring non-pattern moves.
- If no tile belongs to more than one pattern, then we can add their heuristic values.
- Manhattan distance is a special case of this, where each pattern contains a single tile.

Example Additive Databases

- The 7-tile database contains 58 million entries.
- The 8-tile database contains 519 million entries.

Computing the Heuristic

- Overall heuristic is sum, or 20+25=45 moves
- 20 moves needed to solve red tiles
- 25 moves needed to solve blue tiles
Performance

- **15 Puzzle**: 2000x speedup vs Manhattan dist
 - IDA* with the two DBs shown previously solves 15 Puzzles optimally in 30 milliseconds

- **24 Puzzle**: 12 million x speedup vs Manhattan
 - IDA* can solve random instances in 2 days.
 - Requires 4 DBs as shown
 - Each DB has 128 million entries
 - Without PDBs: 65,000 years

© Daniel S. Weld
Adapted from Richard Korf presentation