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Simultaneous Localization and Mapping

SLAM

● Acting in an unknown/known environment, create/update a map 
of the environment, while localizing on the same map

●
● Estimate:  p(x1:t, m | z1:t, u1:t−1) 
●
● Chicken and egg problem
●
● Three techniques to accurately solve SLAM:

     FastSlam
●      DPSlam
●      GridSlam



Simultaneous Localization and Mapping

SLAM

Often solved using particle filter approaches:

- Given particles S={s1, ..., sm}, resample new states S'={s1',...,
sm'}

- Update the position of each particle sm using the motion model, 
P(s'' | s')

- Assign a weight to each particle based on the probability of the 
observation, P( o | s'')

- Normalize the weights over all particles

 



FastSLAM
The SLAM problem:

Bayes Net
    SLAM posterior factors:
    p(st , Θn |st-1 , zt , ut) = p(st |st-1 , zt , ut)p(Θn |st , zt , ut) 

st: pose of the robot
ut: motion control model
Θn: positions of the 
landmarks
zn: measured positions of the 
landmarks



FastSLAM (contd.)
● Particle Filter

● A particle: (w; s; Θ1…Θn)
● Estimate robot pose s with probabilistic motion model, p(st |st-1 , 

zt , ut)
● Estimate parameters Θi of landmarks using Extended Kalman 

Filter (EKF), p(Θn |st , zt , ut) 
● Weight the particles
● Resample

● Drawback: data association problems when updating Θ



Distributed Particle SLAM

DP-SLAM

Stores only a single physical map in memory

The map stores a balanced tree at each grid location, keyed by 
unique particle ID numbers

Particles update their own maps by associating data with their 
particle ID

Particles are stored in a particle ancestry tree

Particles only update grid squares if it causes the value to differ from 
the parent

 



Distributed Particle SLAM

DP-SLAM



GridSLAM

SLAM - Estimate:  p(x1:t, m | z1:t, u1:t−1)  
●

Split problem into two sub-problems:
●
● 1) Estimate robot's trajectory given observations & controls

○ p(x1:t | z1:t, u1:t−1)
○

● 2) Estimate map given robot's trajectory and observations
●  p(m | x1:t, z1:t)       
●

 Use particle filter to estimate trajectory - each particle has a 
potential trajectory 

Estimate map for each particle - "N" maps if "N" particles
●
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GridSLAM
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Two key techniques
1) Accurate sampling of particles:

2) Adaptive resampling:
    Sample only when dispersion of weights is high
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GridSLAM - 
Implementation

1) Initial guess x_t = x_t−1 ⊕ u_t−1 for robot’s position from odometry
    Use encoders, IMU & Gyro

2) Scan matching: Find best pose x_t matching observation z_t
to particle's map "m_t-1"
   Use Laser scan data & map of robot

3) Sample points around best pose from scan matching

4) Compute target distribution and sample new pose

5) Update weights, map 

6)Resample if needed 



Challenges & Future work
Challenges:

1) Getting SLAM to work in the pacman framework

2) Discrete nature of the pacman framework

Future work:

1) Get gridSLAM working accurately on real data & pacman world

2) Implement DP-SLAM 2.0 with probabilistic occupancy
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