
PacBot – RFID-Based Location Tracking for Robotics

Liang-Ting Jiang and Alex Takakuwa

Abstract— In this project, we utilize the building-scale RFID
readers deployed in the Paul G. Allen Center for Computer
Science & Engineering, including hundreds of RFID readers.
We implement a particle filter to estimate the location of RFID
tags in the building based on the tag read events, and apply the
filter on the continuous domain without the need of predefined
discrete blocks on the map. To evaluate the performance of
the particle filter tracking we compare the error between the
location of a localized robot (the ground truth location) and
the filtered tag location on the static map. We tested and
evaluated several sthinsmodels and motion prediction models,
and analyzed effects of filter update rates. Results show our
system enables fine-grained RFID-based location tracking with
a typical average error of 2.9 meters in a trial on the complete
run of a trial on the 4th-floor of the building.

I. INTRODUCTION ANR RELATED WORK
Commercial and user-centered applications increasingly

use RFID technology to track the locations of people and
objects, particularly in the indoor environment in where GPS
localization is not applicable. Building location-aware appli-
cation based on realtime RFID sensor data is challenging
since the RFID tag reads are usually noisy, sparse in time,
and discrete in space (constrained to where the antennas
are deployed). Wireless indoor localization techniques other
than RFID have also been proposed, for instance, WiFi-based
[1] localization. However, RFID-based localization still has
many advantages among others: low cost battery-free tags,
the ability to associate virtual objects with physical objects,
privacy control, and etc.

In this work, we focus on using the noisy, sparse, and
discrete sensor data read from the building-scale RFID
readers to estimate the location of the RFID tags. The
original RFID Ecosystem infrastrucure in the UW CSE
Building is deployed by the Database Research Group to
provide a living laboratory for long-term, in-depth research
in applications, databases, privacy, security, and systems [3].
Letchner et al. [2] proposed to use Markovian stream, the
output of inference on an hidden Markov model (HMM),
to infer the distributions of the location over time. The
underlying inference technique for HMM is particle filtering.
The discrete location candidates L = {L1, L2, ..., Ln} are
defined on the map, and the probability on each locaion is
found by dividing the number of particles on the locaion and
the total number of particles.

In this work, we aim to extend the particle filtering
algorithm by applying RFID-based location tracking. In
particular, the main goals are:

Liang-Ting Jiang is with the Department of Mechanical Engineering,
University of Washington, Seattle, WA. jianglt@uw.edu

Alex Takakuwa is with the Departments of Computer Science and Engi-
neering, University of Washington, Seattle, WA. alextaka@uw.edu

Fig. 1. RFID antenna deployment map on the 4th floor of the UW CSE
building.

• Apply a particle filter to achieve fine-grained RFID-
based location tracking in a continuous coordinate
without dividing the spaces into predefined locations.

• Combine with robot localization technique to enable
quantitative evaluation of the location tracking accuracy.

• Study and evaluate several sensor models and motion
prediction models for the particle filter.

II. SYSTEM DESIGN AND ALGORITHM

A. System Design

The location tracking system consists of two subsystems:
the RFID Ecosystem, and the particle filter, as shown in Fig-
ure 2. The RFID Ecosystem consists of 44 RFID readers, and
161 antennas deployed in the building. In our experiment, we
tested our system on the 4th floor of the building. Figure 1
shows the deployment of the antennas on the 4th floor of the
building. When an antenna reads a tag, it reports the tag read
zi = (xi, yi) at the location of the antenna to the centralized
server in realtime. The server gathers the tag reads from all
the readers in the building for a given time and publishes the
accumulated tag reads Z = {zi}, i = 1..k, at a fixed rate. An
example of tag reads published by the server looks like: z =
{(16, 20), (28, 30)}

B. Algorithm: Particle Filter

We use an apporximate inference based on the particle
filter for HMM to infer the distribution of the tag location as
the posterior probabilities represented by a set of samples on
the map. The particles are randomly initialized on the free
space of the map. The belief of the current states is defined

Robot

Server

RFID
Centralized system

Antenna
1

Antenna
2...

Antenna N

Tag Reads
Particle

Filter

Tag
Location

Navigation

Python (particle filter)
Java (RFID server)
Robot operating system (ROS)

Discrete (X, Y)

Static map

Fig. 2. System architecture.

Sensor Update
Emission (Sensor)

Model P(Z|X)

Time Update
Motion Model

P(X’|X)
Belief

(particles)
X = (X1, …, Xn)

Fixed rate
(i.e. @1 Hz)

Tag Reads
Z

Fig. 3. Particle filter.

as B(Xt) = P (Xt|Z1:t). Everytime a tag read comes in
to the filter at fixed rate controlled by the RFID server, the
particle filter does a two-step update on the belief:

(1) Motion prediction update (time update): use a motion
prediction model to move each particle, given its location in
the current belief.

B′(X ′) =
∑
x

P (X ′|x)B(x) (1)

(2) Observation update: use sensor (emission) model to
weight each sample with its likelihood on the belief, given
the observation.

B(Xt+1) ∝ P (Z|X)B′(Xt+1) (2)

Figure 3 shows the procedure of the filter updates at each
time stamp. In the next section, we will evaluate the effects of
using different motion prediction models and sensor models
on the tracking accuracy in detail.

C. Location Estimation

Given the current belief, we determine the estimated
location of the tracked tag by computing the average of the
coordinate (xi, yi) over all the particles in the belief.s

Xe =

∑
i (xi, yi)

N
(3)

where N is the number of particles.

III. EVALUATION

A. Evaluation Metrics

In order to measure the tracking accuracy, we put a RFID
tag on a robot and use our system to track its location
Xe. The robot localized itself on the static map using an

Robot
location

Xr

Estimated
location

Xe

d

Particles

Fig. 4. Distance measurement d between the groundtruth (robot) location
Xr and the estimated location Xe from the particle filter.

adaptive KLD-sampling Monte Carlo localization approach
[4], which is provided as a third-party package in ROS. After
the localization, the robot knows its own coordinate on the
map Xr. Using this as the ground truth data, we compute
the Euclidean distance between the ground truth coordinate
and the estimated location:

d = euclidean(Xe −Xr) (4)

We then compute the tracking error e as the averaged
distance over each data collection trial:

e =

∑
i di
Nu

(5)

where Nu is the number of filter updates in the trial. In
the following subsection, the error metric will be used
to compare the accuracy using different filter parameters
including the update rates, motion prediction modeles, and
sensor modeles.

B. Motion Prediction Model

We test motion prediction models with the particle filter
at different filter update rates

1) Random Movement Model: The random movement
model is based on the movement model for RandomGhost
- given a particle position, we perform a time update that
moves it randomly in all directions. However, because we are
working in a continuous space, we model movement with a
Gaussian, rather than a direction and associated probability.
The result is a distribution of possible positions, from which
we resample our particles.

2) Velocity Model: There are, however, some problems
with the random movement model. Namely, the motion
model is meant to track ’ghosts’, which in our case are
meant to be humans walking around the 4th floor with RFID
tags. We notice that a random movement model at each
timestep does not accurately reflect actual human movement
patterns. As such, we adopt a simple model that would more
accurately reflect humans’ tendency to continue to move the
way they have been moving. Our basic model is as follows:
• With 80% probability, the agent will maintain it’s ve-

locity (speed and direction) from the previous time step
• With 20% probabiltiy, the agent will move randomly
• If maintaining it’s velocity sends an agent off the map,

we instead move randomly with 100% probability.

TABLE I
TRACKING ACCURACY COMPARISON WITH DIFFERENT MOTION

PREDICTION MODELS AND FILTER UPDATE RATES (N = 300). SENSOR

MODEL: MULTIMODAL GAUSSIAN (σ2 = 0.5m)

Update Rate (Hz) Motion Model Mean Tracking Err (m)
10 Random (σ2 = 0.1m2) 2.434
1 Random (σ2 = 0.1m2) 4.115
1 Random (σ2 = 1m2) 2.481
1 Velocity (σ2 = 0.1m2) 2.543

3) Effects of Motion Models: We found the tracking per-
formance is correlated with the combination of the random
movement variance σ2 and the filter update rates. Slower
update rates require a larger variance σ2 to give enough
moving freedom for each of the particles. However, applying
a velocity model helps the particles spread out effectively
enough to provide accuracy similar to the random model
with ten times the refresh rate, or ten times the variance,
or ten times the variance. We did not include a test with
high variance and update rate for the velocity model. Table
I shows a comparison of the combinations of the parameters
tested on a trial moving through the entire 4th floor of the
building.

C. Sensor Model

Here we test three sensor models with the particle filter
at sensor update steps. If a reader detects an RFID tag, we
mark it as active, and it will submit both it’s location, and
the number of reads per time step to the centralized server.

1) Multimodal Gaussian: This sensor model is repre-
sented as a simple Gaussian distribution N(µ, σ2) centered
directly underneath the active reader. To build this distri-
bution, we iterate through each active reader and weight
a Gaussian distribution N(µ, σ2) by multiplying by the
number of reads. This way, when a reader registers more
reads, it indicates a higher probability that a tag is beneath
the reader. After iterating through all active readers, we
normalize our probabilities. If multiple readers read a tag, we
can see that the distribution will be a milt-modal Gaussian,
with peaks at each of the antenna locations.

2) Center of Mass Gaussian: Logically, a multi-modal
distribution doesn’t make sense. In a two reader situation,
if a tag registers reads from both readers, it seems more
likely that the object is between the two readers than directly
underneath one or the other. In the center of mass Gaussian,
when a tag is read by multiple readers, we shift the Gaussian
so that it is centered around the center of mass (COM) of all
the antennas. To find the COM, we weight the location (x, y)
of each active reader by the number of reads, and calculate
the coordinates of the center of mass, which will be closer
to readers which register more reads.

3) Trained Emperical Sensor model: However, the pre-
vious two models use a stock Gaussian distribution, which
is not built by experimental data. To improve upon those
two models, we use ground truth data to build representative
distribution based on the number of reads reported by an
active reader. The trained empirical sensor model maps

0
5

10
15

20

−10

−5

0

5

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of tag reads in 0.1 seconddistance (m)

pr
ob

ab
ili

ty

Fig. 5. The emperical sensor model trained from 1237 sensor data points.

(a) (b)

Fig. 6. Comparison of the distribution using different sensor models when a
tag was read by two antennas: (a) using the multimodal gaussian model. (b)
using the trained emperical sensor model. The light blue dots are particles,
large dark blue dots are readers.

a number of reads to a Gaussian distribution N(µ, σ) of
distances from the reader. Figure 5 shows the sensor model
trained from 1237 sensor data points. The data reflects the
underlying logic - as tag reads increase in number, the
probability that a tag is near the reader is very high. More
subtly, we can see that as tag reads decrease, the mean
increases slightly, in addition to increases in variance.

4) Effect of Sensor Models: The effect of the using
different sensor models is best displayed when a tag is read
my multiple antennas. Figure 6 shows an example of a tag
read my two antennas. While using the multimodal gaussian
model, the distribution after sensor updates represents a
bimodal distribution, while using the trained empirical sensor
model results in the desirable distribution centered between
the two antennas. Such a distribution translates well to > 2
readers as well.

When tested on the trial moving through the entire 4th
floor, the performance difference is not as obvious as that
from the motion model, as shown in Table II. Because the
tag moves quickly across the entire floor, the robot does
not spend much of it’s time in readable areas, especially
in areas where it activates multiple readers. As such, mea-
surable performance benefits of improved sensor models are
minimal. However, the trained sensor model does provide
improvement when we reduce the scale from the entire floor
to a smaller size only including a couple readers, as shown

TABLE II
Whole Floor: TRACKING ACCURACY COMPARISON WITH DIFFERENT

SENSOR MODELS (N = 300), RANDOM MOTION MODEL (σ = 0.1m).

Sensor Model (Standard Deviation) Mean Tracking Error (m)
Multimodal (σ = 0.1m) 2.434

Center of Mass (σ = 0.1m) 2.526
Trained Dist. (σ = 0.1m) 2.681

TABLE III
Small Section: TRACKING ACCURACY COMPARISON WITH DIFFERENT

SENSOR MODELS (N = 300), RANDOM MOTION MODEL (σ = 0.1m).

Sensor Model (Standard Deviation) Mean Tracking Error (m)
Multimodal (σ = 0.1m) 1.414

Center of Mass (σ = 0.1m) 1.370
Trained Dist. (σ = 0.1m) 1.360

in Table III.

IV. REFLECTIONS

We were particularly surprised by how difficult it can
be to implement a real world system. There were many
factors that we were not able to understand or account for
going into the project. Issues with robot network connectivity
were particularly frustrating and derailed a number of data
collection attempts. Furthermore, our final goal was to get
the PR2 robot to chase RFID tags by instructing it to move to
a position. Given how the robot moves currently, this seemed
feasible, but without knowledge of the algorithms that choose
a route and instruct movement, debugging unexpected behav-
ior proved too difficult. In particular, a bug that caused the
robot to stop and start required restructuring of a number
of algorithms in order to guarantee, with computational
efficiency, that any point we can potentially send to the robot
would be ’in bounds’ on the map. Unable to get consistent
performance out of the robot, we did not manage to get
a reliable working game of PacMan on the fourth floor.
However, having real world test data verify our intuition and
our algorithms was very rewarding. Certainly, however, we
would have spent more time early on just getting the robot
moving around so as to ameliorate some of the more difficult
and time intensive challenges involving data collection later
on.

V. CONCLUSION AND FUTURE WORK

We have successfully applied a particle filter to track
locations of RFID tags on the fourth floor.

There are a number of expansions to this project which
represent avenues for future work. As far as data col-
lection and verification, more data and different environ-
ments/situations in which to train the robot would be helpful.
Not only for providing more statistical significance to our
findings, more data would allow us to train the robot more
effectively, possibly by detailing the read profile for each
RFID reader on the floor so that we could localize. Also, we
noticed that refining the accuracy of sensor updates didn’t
prove to be nearly as useful as increasing frequency of
updates, or applying velocity models. As such, we could also
build and implement an Unscented Kalman Filter (UKF),

which may give better performance at the cost of some
accuracy. However, in this particular case, the increase in
performance may allow further increases in the frequency,
and it would be interesting to compare the effectiveness of
UKF in comparison to our Particle Filter. Lastly, our Pacman
project is simply using the greedyAgent from previous Pac-
Man projects. Developing a POMDP that could optimize the
agent’s behavior in a partially ovservable space. Changing
estimates and actions based on observations of a human’s
behavior over time would be an interesting project once the
robot is up and effectively chasing down ghosts. We also
would need to implement a way for the PR2 to construct
a plan to attack multiple ’ghosts’ without changing routes
too much. Furthermore, a way to have the robot chase and
successfully eliminate ghosts would be a fun project, as it
should be able to differentiate humans who are playing the
game from humans who are not, via a special hat/shirt of
some sort.

VI. APPENDICIES

The video of an example experiment is online at:

http://youtu.be/fPGdqy2C3sA

Liang-Ting Jiang is responsible for the designing and imple-
menting the system, robot integration, and data collection.
Alex Takakuwa is responsible for the design of the sensor
and motion models, implementation, and verification. The
code base for the particle filter has been adopted from
the Berkeley Pac-Man Projects originaly developed by John
DeNero and Dan Klein. The code base for robot navigation
and localization has been adopted from a ROS package. We
used the PR2 robot from UW Sensor Systems Lab.

REFERENCES

[1] K. Chintalapudi, A. P. Iyer, V. N. Padmanabhan, In-
door Localization Without the Pain, in MobiCom’10,
September 2024, 2010, Chicago, Illinois, USA.

[2] J. Letchner, C. Re, M. Balazinska, M. Philipose, Chal-
lenges for Event Queries over Markovian Streams, in
IEEE Internet Computing Magazine, vol. 12(6), pp. 30-
36, 2008.

[3] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector,
S. Raymer, M. Balazinska, G. Borriello, Building the
Internet of Things Using RFID: The RFID Ecosystem
Experience, in IEEE Internet Computing Magazine, vol.
13(3), pp. 48-55, 2009.

[4] D. Fox, Adapting the sample size in particle filters
through KLD-sampling, in nternational Journal of
Robotics Research (IJRR), vol. 22, 2003.

http://youtu.be/fPGdqy2C3sA

	INTRODUCTION ANR RELATED WORK
	SYSTEM DESIGN AND ALGORITHM
	System Design
	Algorithm: Particle Filter
	Location Estimation

	EVALUATION
	Evaluation Metrics
	Motion Prediction Model
	Random Movement Model
	Velocity Model
	Effects of Motion Models

	Sensor Model
	Multimodal Gaussian
	Center of Mass Gaussian
	Trained Emperical Sensor model
	Effect of Sensor Models

	REFLECTIONS
	CONCLUSION AND FUTURE WORK
	APPENDICIES

