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Problem Statement 

Pacman is a small yet powerful code base for AI educations. The code base has 

already implemented frameworks for a bunch of important AI algorithms, including 

basic search, competitive search, Markov Decision Process(MDP), reinforcement 

learning and particle filtering, in the form of interesting games. Although students 

already are able to learn a lot from this current code base, it may not sufficient if the 

students want to learn more advanced models and algorithms such POMDP. 

This project aims to fill this up, i.e. implementing the general framework for POMDP 

in Pacman. Specifically, the project implemented several functional parts: 

1. Extend the MDP interface in existing code base to provide POMDP problem 

modeling 

2. Implement a MDP module for Pacman. Existing code base provides the MDP 

module only for gridworld. And the Pacman MDP module is required to 

implement Pacman POMDP. 

3. Implement a basic adaptive POMDP algorithm, which is a simple adaptation of 

MDP to POMDP.  

4. Implement the PBVI [1] algorithm for Pacman POMDP. The current 

implementation still has problems which are caused by some difficulties I meet. 

The details are discussed in the Difficulties Meet section. 

Implementations 

To support POMDP, I extend the basic MarkovDecisionProcess in mdp.py to include 

two more methods which are required by the POMDP model. The code is in 

pomdp.py. 

The MDP module for Pacman lies in mdpAgents.py. The key point here is to have a 

correct state modeling and correctly implementation of the state transition 

probability distributions. The built-in game state is not correct here because it 

records scores the Pacman currently earned as its state. Current implementation use 

the agent positions, and the food status as the state (PacmanMDPState). No capsules 

are allowed for simplification. To implement the state transition probability 

distributions, we need to know the ghost model before the MDP process runs. The 

current implementation uses only random ghost modeling for simplicity. 

To fit the MDP module into the Pacman framework, PacmanMDPAgent is 
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implemented to give out directives (actions) to the Pacman during running. It does 

value iteration before the actual game starts. The command to run the pacman game 

using MDP is: 

python pacman.py -p PacmanMDPAgent -a 

iterations=$ITERATION,discount=$DISCOUNT -l $LAYOUT 

For POMDP, in addition to all the modeling in the MDP part, we need an extra 

observation model. Currently, the observation model is fixed as the following for 

both the adaptive POMDP algorithm and the PBVI algorithm: 

The Pacman can always directly observe its own position and the current 

food state. It cannot directly observe where the ghost is. But it can observe 

the Manhattan distance between itself and the ghost. 

This observation model is actually very simple because the mapping from any state, 

in which the Pacman position and the ghost position are both given, to the 

Manhattan distance is deterministic. 

The adaptive POMDP algorithm is implemented in distObservableAgents.py. It works 

as the following. 

1. Compute an MDP model for the current game setting 

2. At each step, first compute the posterior belief of the ghost positions using the 

observation. And then choose the position with the highest updated belief (i.e. 

MAP estimation of ghost positions). And at last, assume that the ghost is actually 

at the MAP position and use the pre-computed MDP model to find out the action 

to be taken. 

The command to run the adaptive POMDP algorithm is: 

python pacman.py -p AdaptivePOMDPAgent -a 

iterations=$ITERATION,discount=$DISCOUNT -l $LAYOUT 

The PBVI algorithm is a point-based approximate algorithm to solve POMDP 

problems. The reason of implementing PBVI rather than exact POMDP solving 

algorithms is that in Pacman the number of states can be very large even for a tiny 

layout. For example, the following 7X7 layout (): 

%%%%%%% 

%__P__% 

%_%%%_% 

%_%%%_% 

%_%.%_% 

%_.G._% 

%%%%%%% 

has different number of states as many as (16 Pacman possible non-food positions) * 

(19 ghost possible positions) * (23 different food status) + (3 Pcaman possible food 



positions)* (19 ghost possible positions) * (22 different food status without the food 

right under Pacman) = 2660 different states. Note that the number of states grows 

exponentially as the number of food grows. Therefore if the above grid is full of food, 

the number of states can be as large as about 219 = 524288. This is way too many for 

exact POMDP solvers. 

The PBVI algorithm is implemented in pbviAgents.py. The algorithm alternates 

between a belief point expansion step and a finite-horizon value iteration step. The 

algorithm adopts the same observation model and the same ghost model as in 

AdaptivePOMDPAgent. The number of alternates is controlled by the model 

parameter iterations, and the horizon is controlled by model parameter horizon. 

The command to run the PBVI Pacman algorithm is: 

python pacman.py -p PBVIAgent -a 

iterations=$ITERATION,discount=$DISCOUNT,horizon=$HORIZON -l $LAYOUT 

Currently, the algorithm still have problems. The details are discussed in the 

Difficulties Meet section. 

Experiments 

I conducted some simple experiments to test the correction of the algorithms and 

the relative effectiveness of the different algorithms. 

Because the PBVI algorithm still fails to give the correct answers, I only did 

experiments using PacmanMDPAgent and AdaptiveMDPAgent. For either model, I set 

the number of iterations to be 20 and run 100 games after the MDP models are 

computed. The layout used by both algorithms is smallPOMDP. 

The experiment result is as the following: 

Algorithm Win Rate Average Score 

PacmanMDPAgent 100/100 (1.0) 518.65 

AdaptiveMDPAgent 59/100 (0.59) 102.52 

The result is just as expected. PacmanMDPAgent is expected to win every time 

because it is able to observe everything and is able to plan as good as we want. 20 

iterations are actually way too many for this algorithm. 5 iterations are enough for 

the Pacman to win every time. 

The behavior of AdaptiveMDPAgent is actually fixed. The Pacman always go down the 

middle road as the following: 

 

 

 



%%%%%%% 

%__P__% 

%_%|%_% 

%_%%%_% 

%_%.%_% 

%_.G._% 

%%%%%%% 

 

This is because every time the algorithm decides that according MAP estimation, the 

ghost should be either on the left path or on the right path. The middle path is 

always safe to go. And because the ghost model is random, the most probable 

situation in which Pacman may win is that the Ghost goes either the left path or the 

right path, which is about 2/3=0.67 of them time. The number is very close to 0.59. 

Difficulties Meet 

The difficulties I meet all lies in implementing the PBVI algorithm. Most importantly, 

there are two differences between the Pacman environment and the standard 

POMDP environment assumption used by PBVI. 

1. Not all the actions are defined for each state. There are 5 actions defined in 

Pacman, i.e. EAST, SOUTH, WEST, NORTH, and STOP. But if in the current state, 

the Pacman is next to a wall or at a corner, some of the actions cannot be 

conducted. This problem makes the semantic of expected-discounted-reward 

hyper-planes in POMDP solutions unclear. 

2. The second problem is related to the first one but is specific to Point-Based 

solvers. PBVI computes a set of hyper-planes on a finite set of belief points to 

approximate the true value functions. But because different state has different 

subset of valid actions. It happens that given the current belief point bn and the 

belief point bc that is closest to bn, the action which optimize bc may not defined 

for any of the possible states in bn. Especially in our problem, each belief is 

actually a belief over the possible positions of the ghost. All the states in any 

belief will always have the same Pacman position. 

Currently, I’m still thinking about the possible solutions to the above problems. 

Conclusions and Future Work 

To sum up, as the experiments show, the PacmanMDPAgent and the 

AdaptiveMDPAgent work as expected. The partially observability in POMDP make 

simple adaptation of MDP unacceptable.  

I read a lot trying to understand the Point-based POMDP algorithms. During this 

process, I’ve learned a lot. I find POMDP and reinforcement learning very interesting. 



In my opinion, they can be good models for real life. I’ll read more on these topics in 

the future. And I’ll continue working on the PBVI algorithm and definitely will solve 

the problems discussed in the previous section. 
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