
Learning Games By Demonstration

Rahul Banerjee, Brandon Holt

December 13, 2012

Abstract

To enable the creation of simple 2D games without writing code,
we propose a system that can learn the game logic from user traces
demonstrating what should happen. Though our system is aimed at
helping non-programmers design and build simple games, it could even be
useful for game programmers to rapidly iterate through early prototypes
while refining game logic. Learning programs from examples has been
shown to be successful in specific domains where the space of possible
programs is small and well-defined. We leverage domain knowledge of
simple 2D games to compactly represent the state space and thereby allow
fairly complex games to be expressed simply with a small vocabulary, and
learned from a small set of user traces. We implement and evaluate a
prototype system based on this approach and show three different games
that can be built with it.

Figure 1: Teaching our prototype system how to play Breakout.

1



1 Introduction

Playing video games is fun and engaging, and building them, more so. However,
not everybody knows programming well enough to create (or modify existing)
games. Also, even programmers who want to rapidly iterate over game agent
behavior would not relish the thought of coding up several programs or scripts
to try out different scenarios. In our system, we aim to leverage Programming
By Demonstration (hereafter referred to as PBD) to generate games by having
the system infer the game logic from user-demonstrated examples.

1.1 Problem Statement

Let us consider the problem of implementing game logic for a 2D game in a
non-scrolling world. Such games typically consist of:

• A 2D gameplay area,

• Objects in the game world, and

• Behavior for these objects. Some of them respond to the user’s keypresses,
others to collisions, while some are static (e.g. walls). They may respond
by starting, stopping, or changing their motion, by dying or spawning, by
changing a “score”, by ending the game (win/loss), etc.

The system should display the gameplay area and objects to the user, then infer
the behavior from demonstrations performed by the user, like moving objects
around, deleting them, etc.

1.2 Related Work

PBD has been successfully applied in other domains prior to this work. Lau et
al. [5] applied PBD to infer text-editing macros from user examples. They used
Version Space Algebra (VSA) to efficiently represent and refine the hypothesis
space (the set of all possible programs that are consistent with the user trace
encountered so far).

Gulwani et al. [4] demonstrated a VSA-like approach for inferring Excel
macros from input-output example pairs.

In [2], the authors leveraged domain knowledge to infer programs for common
arithmetic operations by observing calculation traces. Our approach is closest
to this work, where a small set of hand-selected program templates are fitted to
user traces and the closest fit is deemed the best hypothesis.

There are other approaches to making game-building easier, like Stencyl [1],
which is a set of customizable game templates, or Kodu [6], which is a GUI-
based programming environment on the Xbox 360 aimed at young children.
These systems present ways to define the behavior of a game, but neither use
demonstrations or examples to generate any part of the game.

2



Figure 2: Main game loop.

1 while (GameRunning):
2 # event handling
3 for trigger in detectTriggers(gameState):
4 action = LearnedActions[type(trigger)]
5 action(trigger, gameState)
6 # step each object according to its current behavior
7 for o in gameState.gameObjects:
8 o.update()

1.3 Overview

The rest of this report explains how we use PBD for learning games, followed by
a description of our prototype implementation. We then give results from our
pilot user study, provide directions for future improvement and round off with
conclusions.

2 Approach to learning games

The basic idea behind any learning by demonstration system is to define a
limited domain-specific vocabulary and grammar that will be able to encode
useful programs but will be simple enough to learn with few examples. We
leverage knowledge of how simple 2D games behave to determine how to represent
games and define the space of learnable behaviors.

2.1 Game representation

We recognize that simple games typically consist of a number of independent
objects that interact in the game world. The game state (gameState) at time
t consists of a set of individual game objects {o1, ..., on}.

Game objects can be thought of as finite state machines where each state has
(at least) a position ((x, y) coordinates in our 2D game world) and behavior b,
though they could be extended with arbitrary data. An example of a behavior is
one that updates position according to a velocity. Typical game objects include
walls, food pieces in Pacman, or the user-controlled “paddle” in Pong.

The program running a game is basically a combination of a game-object
update loop and an event-handler that modifies game objects based on detected
events. Each iteration of this game loop corresponds to advancing game time.
Behaviors determine how all of the game objects are updated each time step
(how each state machine is advanced). Game objects and the user of the game
interact through triggers, which act to modify the behaviors of game objects.
Figure 2 shows the main game loop that is used to run the game. This game logic
is fixed. The “logic” for a particular game is learned by adding and updating the
LearnedActions lookup table as detailed below. Though not implemented in

3



Figure 3: Game Representation

Parameterized trigger types:
(τ is an object type)

• initialize < τ >
• keypress < key >
• blocking collision < τ1, τ2 >
• touching collision < τ1, τ2 >
• separate after touch < τ1, τ2 >
• . . .

Actions available for learning:

• replace(object, (x, y))
• bounce(object, {x|y})
• spawn(new object)
• delete(object)
• addPoints(n)
• winGame()
• loseGame()

our system, a “level editor” is also necessary to allow creation of arbitrary game
objects and level layouts.

2.2 Game vocabulary

Before explaining how game logic is learned, we must define the space of actions
that game objects can take and under what circumstances they interact with
each other and the user.

Triggers, as mentioned already, correspond to events that may occur while
running the game, such as a key being pressed, or two objects colliding. The
LearnedActions table is a map of trigger types to actions. This is to allow
the system to learn a trigger → action pair for a single instance and generalize
to the rest (e.g. a ball should bounce off of any wall tile). Trigger types are
parameterized by other types depending on the kind of trigger. For instance,
collisions are parameterized by the types of the objects colliding to allow different
actions to be learned. A full list of triggers can be found in Figure 3.

Actions modify the state of game objects. Most often this means modifying
the behavior of an object, such as bounce which inverts one component of an
object’s velocity if it is moving. Other available actions change the overall game
state, such as deleting objects or ending the game as a loss.

When a trigger is detected for a game state, it is associated with specific
object instances. This allows the game loop (Figure 2) to lookup the learned
action and apply it the specific object instances the trigger was detected for. A
completed action table defines how all of the game objects interact, making up a
complete game. While this vocabulary restricts the set of possible games we can
build, it also constrains the search space in a way that lends itself to learning by
demonstration.

2.3 User Demonstration

Our system allows the user to demonstrate game object behavior, including:

• Motion or change therein (including stopping): The user drags the object
to indicate the desired motion. Stopping is inferred from a no-movement
drag.

4



Figure 4: Learning Algorithm

1 userTrace = <selected object trace, got via demonstration>
2 trigger = <trigger that initiated this user demonstration>
3 MatchedActions = <empty list>
4 for action in KnownActions:
5 newGameState = copy of gameState
6 # applying the action to the game state
7 # gives us the new behavior
8 action(trigger, newGameState)
9 newBehavior = <behavior of object within newGameState>

10 newTrace = <trace generated by executing newBehavior>
11 # if it matches, then this is a candidate action
12 if Similar(userTrace, newTrace):
13 MatchedActions.append(action)
14 return MatchedActions

• Deletion of game objects: The user clicks the “Delete” button, then clicks
on the object that must be removed.

• Game over (win/loss) and score changes: These are not implemented yet,
but we plan to have dedicated buttons for them.

2.4 Learning From Traces

In response to some trigger, having recorded the motion or deletion traces from
the user, our system compares the existing behavior against the new (user
demonstrated) behavior. Starting from a small candidate set of actions (for
motion, deletion, etc), we find the ones that transform the old behavior to
match the new one, then pick the most general one (according to a hand-picked
generality ordering).

In future implementations, we plan to maintain all candidates (instead of
picking one and discarding the rest). In that case, incorrect inferences can
be corrected by demonstrating more traces, and successively shrinking the
hypothesis space to only include the actions consistent with all examples. Since
the UI is currently very restricted, and since this system was built in a very short
time, we chose to pick only the best candidate action. Our learning algorithm is
listed in Figure 4.

3 Prototype implementation

We implemented a simplified version of the above algorithm, with a functional
UI using PyQt, incorporating certain simplifications due to time constraints.

5



Figure 5: Learning games from demonstration in our prototype.

(a) Pong (b) Pacman

(c) Breakout (shown in Figure 1)

3.1 On-demand demonstration

The current design takes a lazy approach to demonstrating trigger → action
pairs. All objects begin with no movement (i.e., no behavior), and LearnedActions
starts out empty. While running the game, whenever a trigger happens that does
not map to an action yet, the game pauses and prompts the user to demonstrate
what should happen. The user indicates completion of a demonstration explicitly
by clicking a “done” button. Alternatively, if the intention is that a demonstrated
action would continue indefinitely (such as continuing the motion of a flying ball),
then the user indicates that by selecting a different button: “done with repeat”.
This gives our system a well-segmented trace, making the job of recognizing
actions as simple as possible. Further, filling in LearnedActions lazily allows
the user to “run” the game even though it is only partially learned.

3.2 Choosing the best candidate action

As Figure 4 shows, the set of candidate actions need not be a singleton. However,
the only way to actually run the game would be to choose a particular action, or
run all actions in parallel until they diverge. Ideally, we’d have a more capable
UI which would allow the user to demonstrate multiple traces, or go back and
correct the system when its playback is different from the user’s expectations.
In the absence of such a UI, we decided to rely on a generality ordering and pick
the most generic action that would fit the given example.

3.3 Similarity of traces

There are several ways to compare traces. For deletion, making sure that objects
deleted in both traces are of the same type, and have similar relative positions
(e.g. touching the player) is sufficient. For motion, the user will not be able to
draw the exact same path twice. So we constrained the user’s click-drag motions
to be discretized to the 2D game world’s underlying grid. This made comparison
of motion trajectories much more robust.

6



4 Evaluation

We evaluate our prototype with an informal user study. The goal of the user
study is not to evaluate the user interface in particular, but rather to see if
people besides ourselves are able to understand and use our model for learning
games.

4.1 Method

Because our focus is not on having an intuitive user interface, our study focuses
on getting participants comfortable enough using our prototype to give feedback
about the overall approach to learning games. For each participant we explained
how the game will be represented (by a map of triggers to actions) and how the
user demonstrates what should happen in order for the system to learn these
mappings. We then demonstrated how to make simplified versions of Pong and
Pacman (as in the class presentation). Following our tutorial, the participants
were given the pre-made board for Breakout and asked to demonstrate how to
play the game. Requirements were that the paddle be manipulable by keys, the
ball moved diagonally and bounced correctly, and the bricks were deleted when
the ball hit them. Participants were encouraged to ask questions at any time
during the tutorial or as they worked on teaching their own game.

4.2 Results

We found three Computer Science grad students to participate in our study.
Two of them work at least partly on game-related research, one on machine
learning and artificial intelligence. Despite biasing us toward users who had
prior experience in this area, it resulted in providing us with interesting feedback
about our approach.

All three participants were able to teach Breakout successfully, though two
had to start over once because of a mistake that could not be corrected due to
bugs in our implementation. Interestingly, each of the participants came up with
a slightly different way to manipulate the paddle (directly with “left” and “right”
controls, with “lazy” left and right that keep going after releasing, and with a
single “toggle” direction). We believe this demonstrates a degree of flexibility in
our system–more than one game can be made even with the same set of starting
objects.

Overall, feedback was positive. The participants were able to look beyond the
limitations of the current prototype and ask insightful questions about the design
we envision. Participants asked many questions to help them understanding how
the system learns behaviors before they felt comfortable trying themselves.

An issue came up a couple of times about how behaviors are generalized
and which objects a demonstration applies to. In our current implementation,
all instances of a type of object, such as walls, must have the same action.
The long-term goal would be to incorporate multiple examples to disambiguate
behavior and re-partition classes of objects that should behave in different ways.

7



However, this limitation caused confusions because it was not always clear why
actions would generalize in some cases but not all. It was suggested by one
participant that this could be made simpler by highlighting related objects when
learning, and allowing behaviors to be copied between different objects.

The distinction we make between “done” and “done with repeat” required
the most explanation and caused hesitation when demonstrating actions. With
support for learning more general actions and learning from multiple traces, the
need for such as distinction may go away. In particular, this distinction is closely
tied with the interaction mechanism implemented for this prototype and could
be completely different in another system such as will be described in the future
work section below.

We also received a suggestion that we get ideas about interaction models from
a low-fidelity “paper prototype”. Participants would be asked to demonstrate
a game to someone using actual paper cutouts of the game board and objects
(possibly with the restriction that they cannot talk). From observing how these
demonstrations were done, how ambiguous cases were handled, etc., we may
come up with novel interaction schemes.

5 Future

While the simple prototype implemented so far can actually learn games, the
interaction mechanisms are unintuitive and the set of games that are possible
to learn is much smaller than our proposed model could support. Future work
could extend this functionality in a number of interesting ways.

5.1 Advanced learning

Even if the proposed learning model was fully implemented, it would not support
learning complicated compound actions. A more advanced learning algorithm
could do recursive matching to learn more complex actions from the simple
vocabulary we described. Further, by adding a concept of learning how objects
relate (spatially or otherwise) to each other, pattern-based triggers could be
learned as well. In the simplest case, this could allow us to learn multi-body
behavior like in Conway’s Game of Life, but would significantly add to the
complexity of the search problem. To handle the exponential explosion of state,
future work would most likely need to use VSA or similar techniques to keep
the problem tractable.

5.2 Continuous space

One of the most frustrating aspects of using the prototype from this work is the
discrete grid that objects are confined to moving in. It makes demonstrating
gestures difficult and reduces the quality of the output. Allowing continuous
movements is preferable, but making motions look natural and reproducible
requires intelligent smoothing. The goal of smoothing trajectories would be to

8



come up with the “simplest” explanation for the curve, whether it’s a straight
line or regular curve of some sort. This is basically an extension of learning the
most general explanation for a behavior, similar to some related work on solving
constraints to choose the best-looking construction when drawing geometry [3].

5.3 Timeline interaction

The “on-demand” demonstration used in this work does not allow learning
to be refined by demonstrating more than one example. One possibility for
future work would be to incorporate the idea of a “timeline” control to allow
the user to move around through the trace. While the timeline is at the end,
the game runs completely from its LearnedActions table. However, if time is
“rewound”, the trace is replayed instead. While “back in time”, any actions the
user demonstrates that diverge from the recorded trace can be assumed to be
teaching new behavior (or refining existing learned behavior).

5.4 Physics-based learning

The current design assumes nothing about the way objects behave; even collision
with walls can be bypassed easily. However, another property of many games is
some semblance of physics, such as gravity in platformers. This gave us the idea
that adding “physicality” constraints and learning physics-based actions may
result in realistic-feeling games much more easily. For example, a “jump” action
in a Mario-like game could be learned as just an impulse on the Mario character,
and the rest of the way Mario behaves, such as landing on platforms and being
blocked by walls happens automatically. Learning the “most physically accurate”
action is another kind of generality ordering that could help simplify teaching
complex games easily.

6 Conclusion

This work applies the concept of programming by demonstration to a new domain:
game design. We leverage knowledge about game programming to narrow the
problem space to where it is possible to learn game logic from a small number of
examples. Even with a very small vocabulary, limited learning capability, and a
simple interaction model, we were able to successfully build a few different 2D
games. Designing other games than are shown in this paper should only require
making new game objects and game boards for them. Building this prototype
allowed us to debug the design of the game representation and learning model on
concrete examples and allowed us to show the idea to people and get feedback.
This work can inform another iteration of the design that has a more capable
user interface, larger vocabulary of actions and triggers, and expanded learning
capabilities.

9



A Appendix

A.1 Who did what?

Initial ideas and high-level design were done by Rahul for his own research prior
to the class project. Both Brandon and Rahul were involved in sketching out
the triggers and actions vocabulary and working out the details of the learning
systems.

The prototype implementation was created for the AI class project. Rahul
and Brandon both worked on the Python code, with Rahul focusing primarily
on the learning modules and Brandon doing most of the GUI maintenance.

A.2 Code

Code for the project is included in the submission. It consists of a small number
of Python modules that define the learning system and make up the graphi-
cal user interface. The only external code we use is the PyQt framework for
our cross-platform GUI, which can be downloaded from here: http://www.
riverbankcomputing.com/software/pyqt/download. With PyQt in-
stalled, the program can be run with the command:

python mainapp.py

From within the GUI, different starting boards can be loaded with a dropdown
menu on the left. Learning controls are on the right side. Warning: this code
is a very rough prototype and is likely to break often during use. Please let the
authors know if you encounter problems running it and would like some help.

References

[1] Stencyl. http://stencyl.com/.

[2] E. Anderson, S. Gulwani, and Z. Popovic. Programming by demonstration
framework applied to procedural math problems. (Unpublished).

[3] S. Cheema, S. Gulwani, and J. LaViola. Quickdraw: improving drawing
experience for geometric diagrams. In Proceedings of the 2012 ACM Annual
Conference on Human Factors in Computing Systems (CHI 2012), pages
1037–1064. ACM, 2012.

[4] S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation using
examples. Communications of the ACM, 55(8):97–105, 2012.

[5] T. Lau, S. Wolfman, P. Domingos, and D. Weld. Programming by demon-
stration using version space algebra. Machine Learning, 53(1):111–156, 2003.

[6] M. MacLaurin. The design of Kodu: a tiny visual programming language
for children on the Xbox 360. In ACM Sigplan Notices, volume 46, pages
241–246. ACM, 2011.

10

http://www.riverbankcomputing.com/software/pyqt/download
http://www.riverbankcomputing.com/software/pyqt/download
http://stencyl.com/

	Introduction
	Problem Statement
	Related Work
	Overview

	Approach to learning games
	Game representation
	Game vocabulary
	User Demonstration
	Learning From Traces

	Prototype implementation
	On-demand demonstration
	Choosing the best candidate action
	Similarity of traces

	Evaluation
	Method
	Results

	Future
	Advanced learning
	Continuous space
	Timeline interaction
	Physics-based learning

	Conclusion
	Appendix
	Who did what?
	Code


