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Abstract 

We design and implement an Android application, “Activity Stalker”, that can recognize and 

record what activity a person is doing in real time. In particular, the application can 

automatically distinguish between five activities: standing, walking, running, jumping jacks, 

and jumping rope. We use various machine-learning models and show that the classification 

accuracy is quite reasonable, both quantitatively and qualitatively. The application can also 

record the number of times a user performs a specific activity, as well as the length of each 

activity, either from the most recent session or the total accumulative time.  

 

1. Introduction 

Nowadays, many smart phones have powerful sensors. It would be interesting if we could 

take advantage of the sensors in order to create some useful applications. In this paper, we 

develop an activity recognition application based on the acceleration sensor, also known 

as the accelerometer, in an Android-based phone.  

 

There are several motivating factors for us to develop such an application. First of all, it 

would be possible to monitor the health condition of a person if we developed such a 

system. If you sit for a long time and do little exercise, the system would record this.  

Perhaps another application could detect when an elderly person who is living alone falls, 

and respond by placing a call to emergency services.  Secondly, it could monitor the 

behavior of children. It is not uncommon for a child to have a smart phone at present, and 

it could be useful for parents to understand what their child is doing. Finally, the use of 

such an application is very convenient, in the sense that you just need to put your phone 
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in your pocket and your activity data can be recorded and presented comprehensively to 

outline workouts and daily activities.  

 

We did not build our system from scratch. Instead, we follow a lab tutorial from 

Dartmouth
1
. We generalize the tutorial in several aspects. First, we extend it to look at 

some newer activities (jumping rope and jumping jacks). This extension turns to be much 

more difficult. Secondly, we use more machine learning models, including decision trees, 

Naïve Bayes and logistic regression, while the lab only uses decision trees. By doing this, 

we can see which model performs best. Lastly, we add a new mode called history mode. 

That is, our application allows the user to view their activity history in a comprehensive 

form.   

 

The goals for our project were two-fold: first, we wanted to determine how effective 

features used in the Dartmouth paper were when applied to two similar activities, jumping 

jacks and jumping rope; secondly, we wished to determine which classification model 

proved to be the most accurate and fitting for the activities we wished to recognize.  What 

we found was that the features we chose worked pretty well, even when applied to these 

two extra activities.  When analyzed through WEKA, we determined that a logistic 

regression model was most accurate; however, we were unable to test which classification 

model worked best in practice.   

 

2. Related Work 

Bao and Intille (Bao and Intille, 2004) are among the first to develop an activity 

recognition system. But their system is not practical in that it needs multiple 

accelerometers. Some other papers, for example Parkka et al. (Parkka et al., 2006), use 

multiple types of sensors. In our paper, we just use the standard smart phone’s 

accelerometer. Kwapisz et al. (Kwapisz et al. 2010) use one accelerometer as we did, but 

they did not carry out user studies, nor did their system record the number of times and 

                                                             
1 http://www.cs.dartmouth.edu/~campbell/cs65/lab6.pdf 
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the elapsed time for each activity. 

3. System Overview 

3.1 Data Collecting 

 

Figure 1: The data collection process
2
. 

 

The first step to our project was to collect raw accelerometer data and transform it 

into features that WEKA
3
, the machine-learning tool that we implemented, used to 

train a classifier.  To accomplish this, we first took in sensor samples made up of 

acceleration readings in the x, y, and z directions and computed their magnitudes.  

Once we had 64 of these, we stored them as a block and applied a Fast Fourier 

Transform (FFT) algorithm, which essentially converts the list of magnitudes into 

coefficients of a complex sinusoid and orders them from least to greatest frequency.  

Finally, we stored these, along with the maximum magnitude of the 64 samples and 

the label of the activity for which the data was currently being collected in a features 

file that could be read by WEKA.  The reasons we chose these features were two-fold.  

First, the computations were efficient, and were shown to be quite accurate in the 

tutorial we were following.  Second, the activities that we chose did not rely on 

direction, and so converting to magnitudes and then applying a FFT allowed for more 

differentiation between the accelerations produced by activities.  However, something 

                                                             
2 This figure is copied from 2 http://www.cs.dartmouth.edu/~campbell/cs65/lab6.pdf 
3 http://www.cs.waikato.ac.nz/ml/weka/ 
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that we realized later was that the magnitudes between running and jumping rope 

proved similar enough that they were sometimes confused.  Perhaps for future work 

we will include extra features that allow us to distinguish better between these two 

activities.   

 

3.2 Training the Classifiers 

The data is stored in a feature file created by the mobile device, which is then 

uploaded to a computer to generate a classifier. We used WEKA, one of the most 

popular machine learning tools for training and producing classifiers. Figures 2 and 3 

are images of the WEKA application. For this project, we used only the 

“Experimenter” feature of WEKA.  In this mode, we were able to read in the data 

from the features file and produce a classifier given various options and algorithms. 

We used the J48
4
 classifier for our initial application, which is essentially a pruned 

decision tree that works well for recognizing repetitive tasks. It usually takes several 

seconds to generate the output, which contains the classifier source code, the 

performance (or accuracy) of the classifier, and the confusion matrix, discussed later. 

In addition to J48, we also used a Naïve Bayes
5
 model and compared the performance 

and the confusion matrix against J48.  

 

Another reason we chose J48 as our main algorithm was that WEKA was able to 

output source code in Java that we were then able to implement in order to 

automatically classify the unlabeled activities in the Android device. 

                                                             
4 http://weka.sourceforge.net/doc/weka/classifiers/trees/J48.html 
5 http://en.wikipedia.org/wiki/Naive_Bayes_classifier 
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Figure 2: WEKA 

 

 

Figure 3: WEKA output for the J48 Classifier 

 

 

3.3 Two Modes 

For our mobile application, we used the trained classifier to create an “automatic 

mode” that was able to infer the user’s current activity in real time, and a “history 

mode” which displayed most recent activities performed as well as the elapsed time 
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for each activity. 

 

The automatic mode was a natural extension to the code we wrote for our data 

collector. The main difference was that instead of outputting data to a feature file, it  

is stored in a vector that is then fed into the classifier, where it interpreted the activity 

currently being performed and displayed it to the user.  For instance, in Figure 4, 

when the girl is walking, our application could quickly recognize that.  It takes 

approximately three to five seconds to read in enough sensor samples to determine 

activity, so there is a slight delay between readings.   When there is no data initially, a 

“reading sensors” icon and corresponding text are displayed. 

 

Figure 4: “Automatic mode” in action 

 

The history mode essentially records the length of time an activity has been 

performed (e.g. a few minutes, hours, a day, or a week) and keeps track of the most 

recent activities performed. Users were given the option to reset the times recorded if 

they were interested in specific sessions or wanted to determine the times spent daily 

on each activity. A screenshot of history mode in its current state is shown in Figure 5.  
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Figure 5: A screenshot of the history mode 

We also wanted to incorporate various graphical displays in history mode, but we 

were unable to correctly implement the feature in time.  Perhaps this is something 

that we could implement in the future, if we wanted to provide more functionality for 

users. 

 

4. Experimental Studies 

4.1 Classification Accuracy 

We use three different machine learning models in this project: J48 (one 

implementation of the C4.5 decision tree), Naïve Bayes, and Logistic Regression. 

The results are shown as follows.  

 

    

Figure 6: Confusion Matrix for Logistic Regression. 
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Figure 7: Confusion Matrix for J48. 

 

 

Figure 8: Confusion Matrix for Naïve Bayes. 

 

We performed a 10-fold cross validation on our data; that is, 90% of the data is used for 

training and the rest is used for testing.  The matrices shown above display the instances 

of training data that were correctly classified based on the trained model. The rows and 

column headings correspond to the activity (in abbreviated form), and the diagonal entries 

show the number of correctly classified activities; that is, the number of instances that 

standing was classified correctly as standing, walking as walking, etc.  All other entries 

denote the number of times an activity was misclassified as another activity.  For instance, 

the Naïve Bayes confusion matrix shows that standing was incorrectly classified as 

walking in seventeen instances.  One possible reason for this phenomenon is that Naïve 

Bayes assumes that all features are independent, and this may not be the case in practice.    

 The overall classification accuracies are 89.372%, 86.232% and 90.5797%, for J48, 

Naïve Bayes and Logistic Regression respectively.   

 

We mainly focused on J48 in our experiment. It is simple, efficient, and effective. There is 

a pruning process in J48: it goes back through the tree once it's been created and attempts 

to remove branches that do not help by replacing them with leaf nodes.   As mentioned 
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previously, it is also one of the few classifiers in WEKA that outputs a source code that 

we were able to easily copy and paste into our code.   

 

In addition, we also compared Naïve Bayes and J48 to the Logistic Regression model, 

which turned out to be the model with the highest accuracy according to WEKA.  We are 

unsure of how this model works in practice, as we were unable to implement it in our 

code; however, it would be interesting to compare how well these classifiers work in 

automatic mode for future study.   Another interesting thing that we noticed was that 

although the confusion matrix for J48 shows that WEKA incorrectly classifies running as 

jumping rope three times, in practice it seemed to confuse them much more.  (In fact, 

approximately one fifth of the time.)   

 

 

4.2 User Study 

Due to the time constraint, we did a very small, informal user study. The number of 

participants was three, and all of them were UW graduate students.  

 

While the main reaction is that our application is interesting and easy to use in practice, 

the users also give us some feedback for further improvements. For example, there could 

be a specific style of music playing for each activity. When you are sitting, the music 

might be quiet and silent, and when you are running, the music should be more exciting.  

This may be a feature that could be interesting if the user was using the application to 

work out.  A graphical representation of activity time would have also been a nicer UI 

feature. 

 

The positive feedback for the application was that the automatic mode display (the tab 

labeled “Classify”) was described as “easy to interpret” and was able to be seen while 

performing activities where the user could be holding the phone.  Secondly, something we 

were very interested in determining was whether or not the classifier worked as well 

when the user was not involved in the data collection process.  In other words, whether or 
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not the correct activity would be displayed most of the time when the current user did not 

collect the data that trained the classifier.  Since the four members of our group did all of 

the data collecting in order to train the classifier, it was unclear whether our styles of 

running, jumping rope, or doing jumping jacks would affect accuracy.  (We assume 

standing and walking styles are fairly similar across most users.) What we found is that 

the data generalized fairly well, and that the classifier was interpreting activities of users 

outside the group similarly to the way it interpreted them for us.    

 

5. Conclusion and Future Work 

We have developed “Activity Stalker”, an Android application that recognizes the activity 

of a user in real time, and records the amount of time spent on each activity.  In the future, 

we would like to do more user studies in order to further improve the application, and 

perhaps submit it to the Android market. Also, it would be interesting to look at direction-

dependent activities and choose features that could distinguish between them.   Lastly, 

something that we would have perhaps done differently were we to start this project again 

would be to establish a consistent method of collecting data; our current data is mixed 

between activities where the phone was being held, and activities where it remained in the 

user’s pocket for the duration of data collection.  We are unsure as to how much this 

affected classification accuracy, but it would be another interesting experiment to perform.   
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Appendices 

1. Which people did what parts of the work? Were there problematic dynamics in 

your group?  

We mostly split the tasks and design; Daseul did most of the coding for data 

collecting/automatic mode, Felicia worked with history mode and found the lab we 

followed as well as made important design decisions; Caitlin created the presentation 

and graphics, worked with the feature generation aspects and WEKA; and Daniel 

wrote the paper, performed the user study, and compared Naïve Bayes, J48, and 

Logistic Regression.  There were no problematic dynamics other than the fact that it 

was sometimes difficult to coordinate meeting times between four people.   

 

2. Anything you considered surprising or that you learned. What would you do 

differently if you could?  

 

What we found surprising was that jumping rope was often more confused for 

running than doing jumping jacks. It was also surprisingly difficult to create the type 

of visual graphs we wanted in history mode.  If we were to do anything differently, we 

would play around with different features in order to determine the most effective and 

see how well they did at distinguishing between running and jumping rope.  

 

Something we learned was that seemingly very different models ended up all 

classifying fairly accurately. If we had more time, we would also figure out how to 

implement these classifiers in our application in order to do practical analysis.  

Learning how to generate features based on raw acceleration data was also an 

interesting part of this project. Determining whether or not they apply to additional, 

more complex activities was something that was difficult to predict.  Lastly, we all 

learned how to use WEKA (this was the first time any of us had ever used it), which 

will perhaps prove useful in our future research projects. 

 

 


