CSE 573: Artificial Intelligence
Autumn 2010

Lecture 8: Reinforcement Learning
10/26/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Outline

= Reinforcement Learning
» Passive Learning (review)
= TD Updates (review)
= Q-value iteration
= Q-learning
= Linear function approximation

Announcements

* PS1 grades are out
" PS2 due today!
= PS3 will go out tomorrow

= MDPs and RL - should finish all of
content in lecture today

Recap: MDPs

= Markov decision processes:

= States S

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount v)
Start state s,

= Quantities:
» Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state
» QQ-Values = expected future utility from a g-state

Recap: Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z T(s,a,s’) {I{(s, a,s’) +~ \,(s’)}

Throw out old vector V.

Repeat until convergence
This is called a value update or Bellman update

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Recap: Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A|
times longer than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges

What is it doing?

(- Step Delay: 0.10000 [+ (- Epsilon: 0.500 3

' Discount: 0.800 _+) MBI G SRATRE AL S5 -

Recap: Reinforcement Learning

= Reinforcement learning:

= Still have an MDP:

= Asetof statess €S T,/"\
= A set of actions (per state) A L/,) /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Recap: Passive Learning

E

= Simplified task

* You don’t know the transitions T(s,a,s’)

E

You don’t know the rewards R(s,a,s’) -

Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
» This is NOT offline planning!

You are given a policy n(s) T 2

Recap: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Blif(z)]= D ()l

» Model-based: estimate P(x) from samples, compute expectation

i Plz)

: Elf(z)] =), P () f(x)
P(x) =count(z)/k [f(z)] =).,

= Model-free: estimate expectation directly from samples

z; ~ P(x) Elf(z)] = % 2o; f(=:)

= Why does this work”? Because samples appear with the right
frequencies!

Recap: Model-Based Learning

= |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct
= Better than direct estimation?

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.qg.
“stationary noise”)

Recap: Model-Free Learning

V7T(8) — Z T'(s, w(3), s/) [R(s, 7(8), S/) T 7"""""777(*9/)]

» Big idea: why bother learning T? S
» Update V each time we experience a transition mi(s)
= Temporal difference learning (TD) s, 7i(s)
= Policy still fixed!
= Move values toward value of whatever successor \
occurs: running average! A s

sample = R(s,7(s),s) +~4V™(s)
VT(s) — (1 —a)V7(s) + (a)sample
VT(s) «— V™ (s8) + a(sample — V™ (s))

Example: TD Policy Evaluation

V7(s) — (1= a)V7(s) + a [R(s, 7(s),5") + 1V (s")]

(1,1) up -1 (1,1) up -1 | =|—-|—|(D
(1,2) up -1 (1,2) up -1 | | I s
(1,2) up -1 (1,3) right -1 4 7 | (. -
(1,3) right -1 (2,3) right -1 SRS
(2,3) right -1 (3,3) right -1 .

(3,3) right -1 (3,2) up -1

(3,2) up -1 (4,2) exit -100

(3,3) right -1 (done) ?

(4,3) exit +100

(done) !

Takey=1,a=0.5

Recap: Problems with TD Val. lter.

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
' s.a)= Z T(s,a,s’) {R(s, a,s’) + 'ﬂ,ﬂ'*(.s')]

» |dea: learn Q-values directly
= Makes action selection model-free too!

Active Learning

= Full reinforcement learning

* You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)
You can choose any actions you like

E

Goal: learn the optimal policy . | }
... what value iteration did!

E

In this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Detour:; Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z} T(s,a,s’) {R(s, a,s’) +~ \,(s’)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qir1(s,a) «— Z T(s,a,s’) {R(s. a,s’) +~ max Q,; (s, a")
S'/

a

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s;a) =) T(s;a, s') [R(s, a,s’) +~ max Q* (¢, (1')]

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s',a’)
(1
» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning: Fixed Policy

P
s s

.
"

Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Q-Learning: ¢ Greedy

AN

ASPAASIAS

Exploration Functions

= \When to explore
» Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an
optimistic utility, e.g. f(u,n) = uw + k/n (exact form not
important)

= Exploration policy (s’)=

mE,)XQ,-(s/.(I/) VS. maxf(Q,-(.s'/.(z/).;\"(s/.u/))
a’

g

Q-Learning Final Solution

= Q-learning produces tables of g-values:

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
» Not too sensitive to how you select actions (!)

= Neat property: off-policy learning
= |learn optimal policy without following it (some caveats)

=

EEEEREN EEENEES

Q-Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
» Too many states to hold the g-tables in memory

* Instead, we want to generalize:

» |earn about some small number of training states
from experience
» Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

Example: Pacman

» | et's say we discover
through experience
that this state Is bad:

* In nalve g learning,
we know nothing
about related states
and their g values:

= Or even this third one!

Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)
= Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)
...... etc.
= |s it the exact state on this slide?

» Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)

Linear Feature Functions

= Using a feature representation, we can write a

g function (or value function) for any state
using a few weights:

V(s) = w1 f1(s) +waf2(s) + ... + wnfn(s)

Q(s,a) = wi f1(s,a)dtwafo(s,a)+...4+wnfn(s,a)

= Advantage: our experience is summed up in
a few powerful numbers

» Disadvantage: states may share features but
actually be very different in value!

Function Approximation

Q(s,a) = wqf1(s,a)dFwsrfo(s,a)4+...+wnfn(s,a)

= Q-learning with linear g-functions:

transition = (s,a.r,s’)

difference = lr + v max Q(s, (1')] - Q(s,a)
Q(s,a) — Q(s,a) + « [difference] Exact Q’s

w; — w; + a [difference] f;(s,a) Approximate Q's

* Intuitive interpretation:
» Adjust weights of active features

» E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7r(s,a)
fpor(s, NORTH) = 0.5
fasr(s, NORTH) = 1.0

s.a) = +1

Q() T a = NORTH
R(s,a,s’) = —500 r 500

correction = —501

Ry A 4.0 8 [—501] 0.5
e 0 s —1.0 + X [—50 1] 1.0

Q(s,a) =3.0fpor(s,a) — 3.0fgst(s,a)

Linear Regression

40

20

f1(x)

Prediction Prediction
:Ij — WO + ’U)]_fl (.’I;') 'g,j — WO —|— ’w]_fl (:II) —|— 'w2j'2(:1:)

Ordinary Least Squares (OLS)

2
total error = Z (y; — ;z]z;)z =) (.u; = Z“‘z.-.fz.-(-l';))

; 2 k

. Error or “residual’
Observation Y

Prediction g

Minimizing Error

Imagine we had only one point x with features f(x):

1

2
error(w) = 5 (y - Z u'kf;‘.(.l-))
k

0 error(w)

dwm

—_ (,l/ - Z u*k.fk(:l?)) f,,,‘(."l.’-)
k

Wm — Wm, + & (y — Z u',\.f,\.(:r)) fm(x)
A.

Approximate q update:

“target” “prediction”

Wm — Wm + o [/' + A max Q(s',a") — Q(s, a)} fm(8,a)

25~

20—

15—

10—

10~

Overfitting

| Degree 15 polynomial

-15

Which Algorithm?

Q-learning, no features, 50 learning trials:

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Which Algorithm?

Q-learning, simple features, 50 learning trials:

Policy Search®

Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

= This is the idea behind policy search, such as what
controlled the upside-down helicopter

Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

Policy Search”

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(8) o e2i Wifi(s,a)

= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.

Review: MDPs

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy)
» Start state dist. b,

Partially observable MDPs

= Markov decision processes:
= States S
= Actions A
» Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount vy)
Start state distribution b,=P(s,))

= POMDPs, just add:

* Observations O
= Observation model P(o|s,a) (or O(s,a,0))

A POMDP: Ghost Hunter

SCORE: -19

POMDP Computations

= Sufficient statistic: belief states
" b,=Pr(s,)

" b’(s’) = Pr(s’ | o, a, b)

O(S’, a, 0) Y S T(s, a, s’)b(s)
Pr(o | a, b)

= POMDPs search trees

= max nodes are belief states

= expectation nodes branch on possible
observations

= (this is motivational; we will not discuss in detail)

