
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 8: Reinforcement Learning
10/26/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, 
Stuart Russell or Andrew Moore

1



Outline
 Reinforcement Learning 

 Passive Learning (review)
 TD Updates (review)
 Q-value iteration
 Q-learning
 Linear function approximation



Announcements

PS1 grades are out
PS2 due today!
PS3 will go out tomorrow
MDPs and RL - should finish all of 
content in lecture today



Recap: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state s0

 Quantities:
 Policy = map of states to actions
 Utility = sum of discounted rewards
 Values = expected future utility from a state
 Q-Values = expected future utility from a q-state

a

s

s, a

s,a,s’
s’



Recap: Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)
 Given Vi

*, calculate the values for all states for depth i+1:

 Throw out old vector Vi
*

 Repeat until convergence
 This is called a value update or Bellman update

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do



Recap: Policy Iteration

 Problem with value iteration:
 Considering all actions each iteration is slow: takes |A| 

times longer than policy evaluation
 But policy doesn’t change each iteration, time wasted

 Alternative to value iteration:
 Step 1: Policy evaluation: calculate utilities for a fixed 

policy (not optimal utilities!) until convergence (fast)
 Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not 
optimal!) utilities (slow but infrequent)

 Repeat steps until policy converges



What is it doing?



Recap: Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do
 Must actually try actions and states out to learn



Recap: Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You are given a policy π(s)
 Goal: learn the state values (and maybe the model)
 I.e., policy evaluation

 In this case:
 Learner “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 We’ll get to the active case soon
 This is NOT offline planning!



Recap: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work?  Because samples appear with the right 
frequencies!



Recap: Model-Based Learning

 Idea:
 Learn the model empirically (rather than values)
 Solve the MDP as if the learned model were correct
 Better than direct estimation?

 Empirical model learning
 Simplest case:

 Count outcomes for each s,a
 Normalize to give estimate of T(s,a,s’)
 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know 
that all squares have related action outcomes, e.g. 
“stationary noise”)



Recap: Model-Free Learning

 Big idea: why bother learning T?
 Update V each time we experience a transition π(s)

s

s, π(s)

s’

 Temporal difference learning (TD)
 Policy still fixed!
 Move values toward value of whatever successor 

occurs: running average!



Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)



Recap: Problems with TD Val. Iter.

 However, if we want to turn our value 
estimates into a policy, we’re sunk:

a

s

s, a

s,a,s’
s’

 TD value leaning is model-free for 
policy evaluation (passive 
learning)

 Idea: learn Q-values directly
 Makes action selection model-free too!



Active Learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policy
 … what value iteration did!

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning!  You actually take actions in the 

world and find out what happens…



Detour: Q-Value Iteration

 Value iteration: find successive approx optimal values
 Start with V0

*(s) = 0
 Given Vi

*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:



Q-Learning Update
 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:



Q-Learning: Fixed Policy



Exploration / Exploitation

 Several schemes for action selection

 Problems with random actions?
 You do explore the space, but keep thrashing 

around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

 Simplest: random actions (ε greedy)
 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy



Q-Learning: ε Greedy



Exploration Functions

 Exploration function
 Takes a value estimate and a count, and returns an 

optimistic utility, e.g.                                    (exact form not 
important)

 Exploration policy π(s’)=

 When to explore
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not (yet) established

vs.



Q-Learning Final Solution

 Q-learning produces tables of q-values:



Q-Learning Properties
 Amazing result: Q-learning converges to optimal policy

 If you explore enough
 If you make the learning rate small enough
 … but not decrease it too quickly!
 Not too sensitive to how you select actions (!)

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E



Q-Learning

 In realistic situations, we cannot possibly learn 
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states 

from experience
 Generalize that experience to new, similar states
 This is a fundamental idea in machine learning, and 

we’ll see it over and over again



Example: Pacman

 Let’s say we discover 
through experience 
that this state is bad:

 In naïve q learning, 
we know nothing 
about related states 
and their q values:

 Or even this third one!



Feature-Based Representations

 Solution: describe a state using 
a vector of features (properties)
 Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)



Linear Feature Functions
 Using a feature representation, we can write a 

q function (or value function) for any state 
using a few weights:

 Disadvantage: states may share features but 
actually be very different in value!

 Advantage: our experience is summed up in 
a few powerful numbers



Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman



0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction



Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation



Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”



0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting



Which Algorithm?
Q-learning, no features, 50 learning trials:



Which Algorithm?
Q-learning, no features, 1000 learning trials:



Which Algorithm?
Q-learning, simple features, 50 learning trials:



Policy Search*



Policy Search*

 Problem: often the feature-based policies that work well 
aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions

 We’ll see this distinction between modeling and prediction again 
later in the course

 Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards

 This is the idea behind policy search, such as what 
controlled the upside-down helicopter



Policy Search*

 Simplest policy search:
 Start with an initial linear value function or q-function
 Nudge each feature weight up and down and see if 

your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical



Policy Search*

 Advanced policy search:
 Write a stochastic (soft) policy:

 Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (details in the book, optional material)

 Take uphill steps, recalculate derivatives, etc.



Review: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state dist. b0

a

s

s, a

s,a,s’
s’



Partially observable MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state distribution b0=P(s0) 

 POMDPs, just add:
 Observations O
 Observation model P(o|s,a) (or O(s,a,o))

 a

b

b, a

      o
b’



A POMDP: Ghost Hunter



POMDP Computations

 Sufficient statistic: belief states
 bo=Pr(so)
  

 POMDPs search trees
 max nodes are belief states
 expectation nodes branch on possible 

observations
 (this is motivational; we will not discuss in detail)

 a

b

b, a

      o
b’

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 107

Fig. 3. In this simple POMDP environment, the empty squares are all indistinguishable on the basis of their
immediate appearance, but the evolution of the belief state can be used to model the agent’s location.

direction. If no movement is possible in a particular direction, then the agent remains in
the same location.
Assume that the agent is initially equally likely to be in any of the three nongoal states.

Thus, its initial belief state is [0.333 0.333 0.000 0.333 ], where the position in the
belief vector corresponds to the state number.
If the agent takes action EAST and does not observe the goal, then the new belief state

becomes [0.100 0.450 0.000 0.450 ]. If it takes action EAST again, and still does not
observe the goal, then the probability mass becomes concentrated in the right-most state:
[0.100 0.164 0.000 0.736 ]. Notice that as long as the agent does not observe the goal
state, it will always have some nonzero belief that it is in any of the nongoal states, since
the actions have nonzero probability of failing.

3.3. Computing belief states

A belief state b is a probability distribution over S . We let b(s) denote the probability
assigned to world state s by belief state b. The axioms of probability require that 0 !
b(s) ! 1 for all s ∈ S and that

∑
s∈S b(s) = 1. The state estimator must compute a new

belief state, b′, given an old belief state b, an action a, and an observation o. The new
degree of belief in some state s′, b′(s′), can be obtained from basic probability theory as
follows:

b′(s′) = Pr
(
s′ | o,a, b

)

= Pr
(
o | s′, a, b

)
Pr

(
s′ | a,b

)

Pr
(
o | a,b

)

= Pr
(
o | s′, a

)∑
s∈S Pr

(
s′ | a,b, s

)
Pr

(
s | a,b

)

Pr
(
o | a,b

)

= O
(
s′, a, o

)∑
s∈S T

(
s, a, s′)b(s)

Pr(o | a,b)
.

The denominator, Pr(o | a,b), can be treated as a normalizing factor, independent of s′,
that causes b′ to sum to 1. The state-estimation function SE(b, a, o) has as its output the
new belief state b′.
Thus, the state-estimation component of a POMDP controller can be constructed quite

simply from a given model.

L.P. Kaelbling et al. / Artificial Intelligence 101 (1998) 99–134 107

Fig. 3. In this simple POMDP environment, the empty squares are all indistinguishable on the basis of their
immediate appearance, but the evolution of the belief state can be used to model the agent’s location.

direction. If no movement is possible in a particular direction, then the agent remains in
the same location.
Assume that the agent is initially equally likely to be in any of the three nongoal states.

Thus, its initial belief state is [0.333 0.333 0.000 0.333 ], where the position in the
belief vector corresponds to the state number.
If the agent takes action EAST and does not observe the goal, then the new belief state

becomes [0.100 0.450 0.000 0.450 ]. If it takes action EAST again, and still does not
observe the goal, then the probability mass becomes concentrated in the right-most state:
[0.100 0.164 0.000 0.736 ]. Notice that as long as the agent does not observe the goal
state, it will always have some nonzero belief that it is in any of the nongoal states, since
the actions have nonzero probability of failing.

3.3. Computing belief states

A belief state b is a probability distribution over S . We let b(s) denote the probability
assigned to world state s by belief state b. The axioms of probability require that 0 !
b(s) ! 1 for all s ∈ S and that

∑
s∈S b(s) = 1. The state estimator must compute a new

belief state, b′, given an old belief state b, an action a, and an observation o. The new
degree of belief in some state s′, b′(s′), can be obtained from basic probability theory as
follows:

b′(s′) = Pr
(
s′ | o,a, b

)

= Pr
(
o | s′, a, b

)
Pr

(
s′ | a,b

)

Pr
(
o | a,b

)

= Pr
(
o | s′, a

)∑
s∈S Pr

(
s′ | a,b, s

)
Pr

(
s | a,b

)

Pr
(
o | a,b

)

= O
(
s′, a, o

)∑
s∈S T

(
s, a, s′)b(s)

Pr(o | a,b)
.

The denominator, Pr(o | a,b), can be treated as a normalizing factor, independent of s′,
that causes b′ to sum to 1. The state-estimation function SE(b, a, o) has as its output the
new belief state b′.
Thus, the state-estimation component of a POMDP controller can be constructed quite

simply from a given model.


