
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 9: RL / Probability Review
10/28/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

1

Outline
 Reinforcement Learning

 (review) Q-learning
 (finish) Linear function approximation
 Policy Iteration (optional)
 POMDPs (definition only)

 Probability review
 Random Variables and Events
 Joint / Marginal / Conditional Distributions
 Product Rule, Chain Rule, Bayes’ Rule
 Probabilistic Inference

Recap: Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do
 Must actually try actions and states out to learn

Recap: Q-Value Iteration

 Value iteration: find successive approx optimal values
 Start with V0

*(s) = 0
 Given Vi

*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Recap: Q-Learning Update
 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s,a,s’,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

=
O(s�, a, o)

�
s∈S T (s, a, s�)b(s)

P (o|a, b)

P (t) =
�

w

P (t, w)

P (w) =
�

t

P (t, w)

sample = r + γ max
a�

Q(s�, a�)

1

Recap: Exploration / Exploitation

 Several schemes for action selection

 Problems with random actions?
 You do explore the space, but keep thrashing

around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

 Simplest: random actions (ε greedy)
 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy

Q-Learning: ε Greedy

Q-Learning Final Solution

 Q-learning produces tables of q-values:

Q-Learning

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states

from experience
 Generalize that experience to new, similar states
 This is a fundamental idea in machine learning, and

we’ll see it over and over again

Example: Pacman

 Let’s say we discover
through experience
that this state is bad:

 In naïve q learning,
we know nothing
about related states
and their q values:

 Or even this third one!

Feature-Based Representations

 Solution: describe a state using
a vector of features (properties)
 Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with
features (e.g. action moves closer to food)

Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction

Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Which Algorithm?
Q-learning, no features, 50 learning trials:

Which Algorithm?
Q-learning, no features, 1000 learning trials:

Which Algorithm?
Q-learning, simple features, 50 learning trials:

Policy Search*

Policy Search*

 Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

 We’ll see this distinction between modeling and prediction again
later in the course

 Solution: learn the policy that maximizes rewards
rather than the value that predicts rewards

 This is the idea behind policy search, such as
what controlled the upside-down helicopter

Policy Search*

 Simplest policy search:
 Start with an initial linear value function or q-function
 Nudge each feature weight up and down and see if

your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

Policy Search*

 Advanced policy search:
 Write a stochastic (soft) policy:

 Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

 Take uphill steps, recalculate derivatives, etc.

Review: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state dist. b0

a

s

s, a

s,a,s’
s’

Partially observable MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state distribution b0=P(s0)

 POMDPs, just add:
 Observations O
 Observation model P(o|s,a) (or O(s,a,o))

 a

b

b, a

 o
b’

A POMDP: Ghost Hunter

POMDP Computations

 Sufficient statistic: belief states

 POMDPs search trees
 max nodes are belief states
 expectation nodes branch on possible observations
 (this is motivational; we will not discuss in detail)

 a

b

b, a

 o
b’

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

1

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

1

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

=
O(s�, a, o)

�
s∈S T (s, a, s�)b(s)

P (o|a, b)

1

Probability Review

 Probability
 Random Variables
 Joint and Marginal Distributions
 Conditional Distribution
 Product Rule, Chain Rule, Bayes’ Rule
 Inference

 You’ll need all this stuff A LOT for the next few
weeks, so make sure you go over it now!

Inference in Ghostbusters

 A ghost is in the grid
somewhere

 Sensor readings tell
how close a square
is to the ghost
 On the ghost: red
 1 or 2 away: orange
 3 or 4 away: yellow
 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

 Sensors are noisy, but we know P(Color | Distance)

Uncertainty

 General situation:
 Evidence: Agent knows certain

things about the state of the world
(e.g., sensor readings or
symptoms)

 Hidden variables: Agent needs to
reason about other aspects (e.g.
where an object is or what disease
is present)

 Model: Agent knows something
about how the known variables
relate to the unknown variables

 Probabilistic reasoning gives us a
framework for managing our
beliefs and knowledge

Random Variables

 A random variable is some aspect of the world about
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, ∞)
 L in possible locations, maybe {(0,0), (0,1), …}

Probability Distributions
 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values
 A probability (lower case value) is a single number

 Must have:

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Joint Distributions
 A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome):

 Size of distribution if n variables with domain sizes d?

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out

Events

 An event is a set E of outcomes
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 From a joint distribution, we can
calculate the probability of any event
 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about
are partial assignments, like P(T=hot)

Marginal Distributions
 Marginal distributions are sub-tables which eliminate variables
 Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

=
O(s�, a, o)

�
s∈S T (s, a, s�)b(s)

P (o|a, b)

P (t) =
�

w

P (t, w)

1

W P
sun 0.6
rain 0.4

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

=
O(s�, a, o)

�
s∈S T (s, a, s�)b(s)

P (o|a, b)

P (t) =
�

w

P (t, w)

P (w) =
�

t

P (t, w)

1

Conditional Probabilities
 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Conditional Distributions
 Conditional distributions are probability distributions over

some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution

Normalization Trick
 A trick to get a whole conditional distribution at once:

 Select the joint probabilities matching the evidence
 Normalize the selection (make it sum to one)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T R P
hot rain 0.1
cold rain 0.3

T P
hot 0.25
cold 0.75

Select Normalize

 Why does this work? Sum of selection is P(evidence)! (P(r), here)

Probabilistic Inference

 Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities
 P(on time | no reported accidents) = 0.90
 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95
 P(on time | no accidents, 5 a.m., raining) = 0.80
 Observing new evidence causes beliefs to be updated

Inference by Enumeration

 P(sun)?

 P(sun | winter)?

 P(sun | winter, warm)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

Inference by Enumeration
 General case:

 Evidence variables:
 Query* variable:
 Hidden variables:

 We want:

All variables

 First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn)
 Space complexity O(dn) to store the joint distribution

The Product Rule

 Sometimes have conditional distributions but want the joint

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

D W P
wet sun 0.08
dry sun 0.72
wet rain 0.14
dry rain 0.06

 Example:

The Chain Rule

 More generally, can always write any joint distribution as
an incremental product of conditional distributions

 Why is this always true?

Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later (e.g. ASR, MT)

 In the running for most important AI equation!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg
http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Note: posterior probability of meningitis still very small
 Note: you should still get stiff necks checked out! Why?

Example
givens

 Example:
 m is meningitis, s is stiff neck

Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform
 Sensor reading model: P(R | G)

 Given: we know what our sensors do
 R = reading color measured at (1,1)
 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

