CSE 573: Artificial Intelligence
Autumn 2010

Lecture 14: Smoothing and the
Perceptron

12/2/2010

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein.

Announcements

= Syllabus revised
» Machine learning focus

* We will do mini-project status reports
during last class

= | will email instructions this weekend

Outline

= Learning: Naive Bayes and Perceptron
* (Recap) Naive Bayes models
= Parameter Estimation
= Smoothing
» Perceptron (binary and multi-class)
= MIRA
= SVMs
* Linear Ranking Models

(Recap) Machine Learning

= Up until now: how to reason in a model
and how to make optimal decisions

* Machine learning: how to acquire a model
on the basis of data / experience

» | earning parameters (e.g. probabilities)

» | earning structure (e.g. BN graphs)

» Learning hidden concepts (e.g. clustering)

(Recap) Important Concepts

Data: labeled instances, e.g. emails marked spam/ham
» Training set
= Held out set
= Test set

Features: attribute-value pairs which characterize each x

Experimentation cycle
= Learn parameters (e.g. model probabilities) on training set
» (Tune hyperparameters on held-out set)
= Very important: never “peek” at the test set!

Evaluation

» Compute accuracy of test set
» Accuracy: fraction of instances predicted correctly

Overfitting and generalization
= \Want a classifier which does well on fest data

= Qverfitting: fittinﬁ the training data very closely, but not
generalizing we

Training
Data

Held-Out
Data

Test
Data

General Nalve Bayes

= A general naive Bayes model.

P(Y;F1:::Fn) = PCY) | P(F;Y) / \

QICHG

= We only specify how each feature depends on the class
= Total number of parameters is linear in n

= Use probabilistic inference to compute most likely Y

y = argmax, P(y|f1...fn)

(Recap) General Naive Bayes

= What do we need in order to use naive Bayes?

» |nference (you know this part)
= Start with a bunch of conditionals, P(Y) and the P(F;|Y) tables

= Use standard inference to compute P(Y|F,...F.)
= Nothing new here

= Estimates of local conditional probability tables
= P(Y), the prior over labels
P(F,|Y) for each feature (evidence variable)

These probabilities are collectively called the parameters of
the model and denoted by 0

Up until now, we assumed these appeared by magic, but...
...they typically come from training data: we’ll look at this now

Parameter Estimation

» Estimating distribution of random variables like X or X | Y

= Flicitation: ask a human!

» Usually need domain experts, and sophisticated ways of eliciting
probabilities (e.g. betting games)

* Trouble calibrating

= Empirically: use training data
= For each outcome x, look at the empirical rate of that value:

Bt e count(x) ‘ ‘ ‘

total samples
Py (r)=1/3

= This is the estimate that maximizes the likelihood of the data

L(z,0) =]‘[Py(z;)

Nailve Bayes for Digits

= Simple version:
= One feature F; for each grid position <i,j>

» Possible feature values are on / off, based on whether intensity
Is more or less than 0.5 in underlying image

= Each input maps to a feature vector, e.g.
’1 — (Fpo=0 Fp1 =0 Fpp=1 Fg3=1 Fpg4=0 ...F1515 =0)

» Here: lots of features, each is binary valued
= Naive Bayes model:

P(Y|Fp0...Fi1515) < P(Y) || P(F; ;|Y)
2,]

= \What do we need to learn?

Nailve Bayes for Text

= Bag-of-Words Naive Bayes:
» Predict unknown class label (spam vs. ham)
» Assume evidence features (e.g. the words) are independent
= Warning: subtly different assumptions than before!

Word at position
i, not ith word in

= (Generative model the dictionary!

P(C,Wy...Wy) = P(C) [] P(W;]|C)
1

— e

» Tied distributions and bag-of-words

= Usually, each variable gets its own conditional probability
distribution P(F|Y)
* |n a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W/|C)
= \WWhy make this assumption?

Example: Overfitting

P(features, C = 2) P(features,C = 3)

P(C=2)=0.1 P(C =3)=0.1

P(on|C =3) =0.8

P(on|C =2) =0.8

P(on|C =3) =0.9

P(on|C =2) =0.1

P(off|C = 3) = 0.7

P(off|C = 2) = 0.1

P(on|C =3) =0.0

P(on|C = 2) = 0.01

2 wins!!

Example: Overfitting

= Posteriors determined by relative probabilities (odds
ratios):

P(W|ham) P(W|spam)
P(W|spam) P(Wlham)
south-west : inf screens : inf
nation : inf minute : inf
morally : inf guaranteed : inf
nicely : inf $205.00 : inf
extent : inf delivery : inf
seriously : inf signature : inf

What went wrong here?

Generalization and Overfitting

» Relative frequency parameters will overfit the training data!

» Just because we never saw a 3 with pixel (15,15) on during training
doesn’t mean we won'’t see it at test time

= Unlikely that every occurrence of “minute” is 100% spam

= Unlikely that every occurrence of “seriously” is 100% ham

= What about all the words that don’t occur in the training set at all?

» In general, we can’t go around giving unseen events zero probability

= As an extreme case, imagine using the entire email as the only
feature

» Would get the training data perfect (if deterministic labeling)
» Wouldn’t generalize at all

» Just making the bag-of-words assumption gives us some
generalization, but isn’t enough

= To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

= Problems with maximum likelihood estimates:

= |f | flip a coin once, and it's heads, what's the estimate for P
(heads)?

= Whatif | flip 10 times with 8 heads?
= What if | flip 10M times with 8M heads?

= Basic idea:

= We have some prior expectation about parameters (here,
the probability of heads)

= Given little evidence, we should skew towards our prior
= Given a lot of evidence, we should listen to the data

Estimation: Smoothing

= Relative frequencies are the maximum likelihood estimates

Orr7, = arg max P(X|0)
0

= arg max | [Py(X;)
0 ;

> PuL(z)=

count(x)
total samples

* |n Bayesian statistics, we think of the parameters as just
another random variable, with its own distribution

Orrap = arg max P(0|X)
0
= arg max P(X|0)P(0)/P(X)
0

= arg max P(X|0) P(#)
0

> 2777

Estimation: Laplace Smoothing

= | aplace’s estimate:

= Pretend you saw every outcome once
more than you actually did

e (f(.‘l.‘) + 1
Prap(z) = 5. [eCo) 21 Py (X) =
~ elz)-1=1
N+ [X]| Prap(X) =

» Can derive this as a MAP estimate with Dirichlet
priors (Bayesian justfication)

Estimation: Laplace Smoothing

» | aplace’s estimate (extended): @ @ @
= Pretend you saw every outcome
k extra times

e(z) +:k Prapo(X) =
N + k|X]|

Prapr(x) =

Prap1(X) =
» What's Laplace with k = 07

= kis the strength of the prior ,
Prap100(X) =
= Laplace for conditionals:
= Smooth each condition
independently: c(x,y) + k

P ADL\L po—
LAPK(Z|Y) (o) + KIX]

Estimation: Linear Interpolation

= |n practice, Laplace often performs poorly for P(X|Y):
» When |X] is very large
= When |Y] is very large

= Another option: linear interpolation

= Also get P(X) from the data
= Make sure the estimate of P(X]|Y) isn’t too different from P(X)

Prin(zly) = a'IA’(;17|y) + (1.0 — o) P(z)

» Whatif atis 0? 1? How do we set .7

Real NB: Smoothing

= For real classification problems, smoothing is critical
= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 : 26.9
areas : 8.3 money : 26.5

Do these make more sense?

Tuning on Held-Out Data

Now we’ve got two kinds of unknowns

Parameters: the probabilities P(Y|X), P(Y)

Hyperparameters, like the amount of
smoothing to do: k, o,

Where to learn?

Learn parameters from training data

Must tune hyperparameters on different
data

= Why?

For each value of the hyperparameters,
train and test on the held-out data

Choose the best value and do a final test
on the test data

accuracy

training

held-out
test

X

Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= \Weak baseline: most frequent label classifier

= Gives all test instances whatever label was most common in the
training set

= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed

= E.g. calling everything “ham™ gets 66%, so a classifier that gets
70% isn’t very good...

= For real research, usually use previous work as a
(strong) baseline

Confidences from a Classifier

= The confidence of a probabilistic classifier:

Posterior over the top label

confidence(z) = max P(y|x)

Represents how sure the classifier is of the
classification

Any probabilistic model will have
confidences

No guarantee confidence is correct

= (Calibration

Weak calibration: higher confidences mean
higher accuracy

Strong calibration: confidence predicts
accuracy rate

What’s the value of calibration?

dCcuracy

dCcuracy

il

P(y|x)

dCcuracy

Precision vs. Recall

Let’'s say we want to classify web pages as
homepages or not actual +
» |n atest set of 1K pages, there are 3 homepages
= Qur classifier says they are all non-homepages
= 99.7 accuracy!
= Need new measures for rare positive events guessed +

» Precision: fraction of guessed positives which were actually positive
= Recall: fraction of actual positives which were guessed as positive

= Say we detect 5 spam emails, of which 2 were actually spam, and we
missed one

» Precision: 2 correct/ 5 guessed = 0.4
» Recall: 2 correct/ 3 true = 0.67

= Which is more important in spam filtering?

Precision vs. Recall

= Precision/recall tradeoff

= Often, you can trade off
precision and recall

* Only works well with
calibrated classifiers

precision

. recall
= To summarize the tradeoft:

» Break-even point: precision
value whenp =r

= F-measure: harmonic mean of

pandr:
2

~ 1/p+1/r

F1

Errors, and What to Do

= Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the

latest version of OmniPage Pro, for just $99.99* - the
regular list price is $499! The most common question we've
received about this offer is - Is this genuine? We would like

to assure you that this offer is authorized by ScanSoft, 1is
genuine and valid. You can get the

.. To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However,
if you'd rather not receive future e-mails announcing new
store launches, please click

What to Do About Errors?

Need more features— words aren’t enough!
* Have you emailed the sender before?
» Have 1K other people just gotten the same email?
» |s the sending information consistent?
* |s the email in ALL CAPS?
= Do inline URLs point where they say they point?
» Does the email address you by (your) name?

Can add these information sources as new variables in
the NB model

Next class we’ll talk about classifiers which let you easily
add arbitrary features more easily

Summary

Bayes rule lets us do diagnostic queries with causal
probabilities

The naive Bayes assumption takes all features to be
iIndependent given the class label

We can build classifiers out of a naive Bayes model
using training data

Smoothing estimates is important in real systems

%Iassifier confidences are useful, when you can get
em

Feature Extractors

» Features: anything you can compute about the input
= A feature extractor maps inputs to feature vectors

Dear Sir. W=dear . 1
. W=sir 1

F1r§tf I must W=this . 2

solicit your

confidence in Tt

this W=wish : 0

transaction, IR

this is by MISSPELLED : 2

virture of its YOUR NAME 1

nature as being ALL EAPS 0

utterly NUM URLS 0

confidencial and -

top secret. ..

= Many classifiers take feature vectors as inputs

= Feature vectors can be very sparse, use sparse
encodings (i.e. only represent non-zero keys)

Generative vs. Discriminative

= Generative classifiers:
* E.g. naive Bayes
= A joint probability model with evidence variables
= Query model for causes given evidence

= Discriminative classifiers:

= No generative model, no Bayes rule, often no
probabilities at all!

» Try to predict the label Y directly from X
» Robust, accurate with varied features
» | oosely: mistake driven rather than model driven

Some (Simplified) Biology

= Very loose inspiration: human neurons

Axonal arborization
® \

\ Axon from another cell

Synapse

Dendrite

Nucleus I /

Synapses

Cell body or Soma

Linear Classifiers

—
= Inputs are feature values (N DT
. A\ ‘ — o~ <
= Each feature has a weight g WISy

= Sum is the activation

activationy(z) =) w; - fi(z) = w- f(x)
l

= |f the activation is: e
= Positive, output +1 Y 3 L s07—
= Negative, output -1 E&V

Example: Spam

* Imagine 4 features (spam is “positive” class):

= free (number of occurrences of “free”) w - f(z)
= money (occurrences of “money”)
= BIAS (intercept, always has value 1) I

w; - f;(x)
X f(x) w 21:

BIAS : 1 BIAS : -3 (1)(-3) +
free : 1 free : 4 (1)(4) +
‘free money” | money : 1 money : 2 AN2) =

=3

Binary Decision Rule

= In the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane
= One side corresponds to Y=+1
= Other corresponds to Y=-1

>
o 2
o)
w = +1 = SPAM
1
BIAS : -3
free : 4
money : 2 0
-1 = HAM 0 1

free

Binary Perceptron Update

= Start with zero weights

= For each training instance:
= Classify with current weights

w

y - f
+1 if w- f(x)>0

o
"/ —1 if w- f(x) <0

= |f correct (i.e., y=y*), no change!

* |f wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w-+vy" - f

Multiclass Decision Rule

= |f we have more than wq - f biggest

two classes:
= Have a weight vector for \\/

each class: w,,
' wp - f w3 - f

= Calculate an activation for biggest \ biggest
each class

activationy(x,y) = wy - f(x)

= Highest activation wins

y = arg max (activationu(z,y))

Example

“win the vote”

“win the election”

“win the game”

WSPORTS WPOLITICS WCRECH
BIAS BIAS : BIAS

win : win win

game game : game

vote vote vote

the : the : the

Example

BIAS 1
win 1
(14 . ”
win the vote game 0
vote 1
the 1
WSPORTS WPOLITICS WTECH
BIAS : =2 BIAS 1 BIAS 2
win : 4 win 2 win 0
game 4 game 0 game 2
vote 0 vote 4 vote 0
the 0 the 0 the 0

The Perceptron Update Rule

= Start with zero weights

= [terate training examples
= Classify with current weights

y = argmax, wy - f(x)
= argmax, >; wy ;- fi(x)

» |f correct, no change!

» |f wrong: lower score of wrong
answer, raise score of right answer W,

wy — f(x)
wy+ + f(x)

?U-y

’l l}? 'l / *

Examples: Perceptron

= Separable Case

45

o + +
35

3 + O
b4 1|8

g + QO O
| o)

W O O
[| 18

.L.

Examples: Perceptron

* Non-Separable Case

!5-;—

45}

4t + + /,/

S /

| + (o %

25 /

zh

L + r

n5H +

i O O

oS-

o 7z z 3 3 4 7 s

Mistake-Driven Classification

= For Nalve Bayes:
» Parameters from data statistics
» Parameters: probabilistic interpretation
* Training: one pass through the data

= For the perceptron:
» Parameters from reactions to mistakes
= Parameters: discriminative
iInterpretation

* Training: go through the data until held-
out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data

Properties of Perceptrons

= Separability: some parameters get
the training set perfectly correct

= Convergence: if the training is
separable, perceptron will
eventually converge (binary case)

» Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

, k
Mmistakes < 5—2

Separable

Problems with the Perceptron

= Noise: if the data isn’'t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* »
: : : : - * »
= Mediocre generalization: finds a - "
“barely” separating solution - o=
training
_ >
= Overtraining: test / held-out .
accuracy usually rises, then falls > et
. . . " es
= Qvertraining is a kind of overfitting O Sy

iterations

Fixing the Perceptron

Wy

= |dea: adjust the weight update to
mitigate these effects

= MIRA*: choose an update size that
fixes the current mistake...

= ... but, minimizes the change tow

2
min —Z||uy wy ||
Guessed vy instead of y* on

wyx - f(x) > wy - f(x) +1 example = with features f(x)

o I
= The +1 helps to generalize Wy = Wy — Tf(x)
* Margin Infused Relaxed Algorithm wy* — , -|— Tf(:l?)

Minimum Correcting Update

!

. -~ ’ i s
min - %. |wy — wi|| wy = wy, — 7 f(x)
- — /
Way* - T ZWypefitel wy* T wy* + Tf(CC)
min ||7f]|?
Wy« f 2wy - f+ 1 Ey*]
>
(Wi +7f) - f = (wly—7f) - f + 1 7 =0
" | min not T=0, or would not
('“‘f_, - “'_ff) - F 1+ 1 have made an error, SO min

O f will be where equality holds

Maximum Step Size

In practice, it's also bad to make updates that

are too large
= Example may be labeled incorrectly
*= You may not have enough features

= Solution: cap the maximum possible
value of T with some constant C

) (wy, —wis) - f+1
77 = min (4 J " &

2f-f

= Corresponds to an optimization that
assumes non-separable data

» Usually converges faster than perceptron
» Usually better, especially on noisy data

-

Linear Separators

= Which of these linear separators is optimal?

Support Vector Machines

Maximizing the margin: good according to intuition, theory, practice
Only support vectors matter; other training examples are ignorable
Support vector machines (SVMs) find the separator with max margin
Basically, SVMs are MIRA where you optimize over all examples at

once MIRA

g 2 .
min —||w u"| .
w 2

wy - f(x;) = wy - f(z;) + 1

SVM

gl
min llu‘H2
w P,

Vi,y wye - f2i) > wy - fla;) + 1

Classification: Comparison

= Nalve Bayes
= Builds a model training data
= Gives prediction probabilities
= Strong assumptions about feature independence
* One pass through data (counting)

= Perceptrons / MIRA:
» Makes less assumptions about data
» Mistake-driven learning
» Multiple passes through data (prediction)
= Often more accurate

Extension: Web Search

_ _ x = “Apple Computers”
= |nformation retrieval:

» Given information needs, Apple Inc.
produce information
* Includes, e.g. web search,

guestion answering, and
classic IR

Apple Inc.

Apple
From Whigeda e Yor oncrchseda

= Web search: not exactly
classification, but rather S [E—
ranking e T

Feature-Based Ranking

x = “Apple Computers”

Apple

™e s the A e of
F(x [—|) = [0.3500 ...]
JOMRsice n he L
- MO0 R 15 one of the most wadely
ned tree fruts. The tree 5 smal

AAAAAAAAA

f(x T D=1[08421..]

Perceptron for Ranking

" Inputs & w
= Candidates Y

= Many feature vectors: f(x,y) flz,y) w
= One weight vector: w 2™
= Prediction: JAT

.l/ — arg max(/ {195 ‘f(:[,'-’ 'l/) ,f(-l'- 'I//)

= Update (if wrong):

w=w+F f(z,y") — f(z,y)

Pacman Apprenticeship!

= Examples are states s

“correct”
» Candidates are pairs (s,a) action a”
= “Correct” actions: those taken by expert
= Features defined over (s,a) pairs: f(s,a) Va £ a*.
= Score of a g-state (s,a) given by: w- f(a*) >w- f(a)

w - f(s,a)

= How is this VERY different from reinforcement learning?

