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Announcements
 Syllabus revised

Machine learning focus
 We will do mini-project status reports 

during last class
 I will email instructions this weekend



Outline
 Learning: Naive Bayes and Perceptron

 (Recap) Naive Bayes models
 Parameter Estimation
 Smoothing
 Perceptron (binary and multi-class)
 MIRA
 SVMs
 Linear Ranking Models



(Recap) Machine Learning

 Up until now: how to reason in a model 
and how to make optimal decisions

 Machine learning: how to acquire a model 
on the basis of data / experience
 Learning parameters (e.g. probabilities)
 Learning structure (e.g. BN graphs)
 Learning hidden concepts (e.g. clustering)



(Recap) Important Concepts
 Data: labeled instances, e.g. emails marked spam/ham

 Training set
 Held out set
 Test set

 Features: attribute-value pairs which characterize each x

 Experimentation cycle
 Learn parameters (e.g. model probabilities) on training set
 (Tune hyperparameters on held-out set)
 Very important: never “peek” at the test set!

 Evaluation
 Compute accuracy of test set
 Accuracy: fraction of instances predicted correctly

 Overfitting and generalization
 Want a classifier which does well on test data
 Overfitting: fitting the training data very closely, but not 

generalizing well

Training
Data

Held-Out
Data

Test
Data



General Naïve Bayes
 A general naive Bayes model:

 We only specify how each feature depends on the class
 Total number of parameters is linear in n
 Use probabilistic inference to compute most likely Y

Y

F1 FnF2



(Recap) General Naïve Bayes

 What do we need in order to use naïve Bayes?

 Estimates of local conditional probability tables
 P(Y), the prior over labels
 P(Fi|Y) for each feature (evidence variable)
 These probabilities are collectively called the parameters of 

the model and denoted by θ
 Up until now, we assumed these appeared by magic, but…
 …they typically come from training data: we’ll look at this now

 Inference (you know this part)
 Start with a bunch of conditionals, P(Y) and the P(Fi|Y) tables
 Use standard inference to compute P(Y|F1…Fn)
 Nothing new here



Parameter Estimation
 Estimating distribution of random variables like X or X | Y

 Elicitation: ask a human!
 Usually need domain experts, and sophisticated ways of eliciting 

probabilities (e.g. betting games)
 Trouble calibrating

r g g

 Empirically: use training data
 For each outcome x, look at the empirical rate of that value:

 This is the estimate that maximizes the likelihood of the data



Naïve Bayes for Digits

 Simple version:
 One feature Fij for each grid position <i,j>
 Possible feature values are on / off, based on whether intensity 

is more or less than 0.5 in underlying image
 Each input maps to a feature vector, e.g.

 Here: lots of features, each is binary valued

 Naïve Bayes model:

 What do we need to learn?



Naïve Bayes for Text
 Bag-of-Words Naïve Bayes:

 Predict unknown class label (spam vs. ham)
 Assume evidence features (e.g. the words) are independent
 Warning: subtly different assumptions than before!

 Generative model

 Tied distributions and bag-of-words
 Usually, each variable gets its own conditional probability 

distribution P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|C)
 Why make this assumption?

Word at position 
i, not ith word in 
the dictionary!



Example: Overfitting

2 wins!!



Example: Overfitting
 Posteriors determined by relative probabilities (odds 

ratios):

south-west : inf
nation     : inf
morally    : inf
nicely     : inf
extent     : inf
seriously  : inf
...

What went wrong here?

screens    : inf
minute     : inf
guaranteed : inf
$205.00    : inf
delivery   : inf
signature  : inf
...



Generalization and Overfitting
 Relative frequency parameters will overfit the training data!

 Just because we never saw a 3 with pixel (15,15) on during training 
doesn’t mean we won’t see it at test time

 Unlikely that every occurrence of “minute” is 100% spam
 Unlikely that every occurrence of “seriously” is 100% ham
 What about all the words that don’t occur in the training set at all?
 In general, we can’t go around giving unseen events zero probability

 As an extreme case, imagine using the entire email as the only 
feature
 Would get the training data perfect (if deterministic labeling)
 Wouldn’t generalize at all
 Just making the bag-of-words assumption gives us some 

generalization, but isn’t enough

 To generalize better: we need to smooth or regularize the estimates



Estimation: Smoothing

 Problems with maximum likelihood estimates:
 If I flip a coin once, and it’s heads, what’s the estimate for P

(heads)?
 What if I flip 10 times with 8 heads?
 What if I flip 10M times with 8M heads?

 Basic idea:
 We have some prior expectation about parameters (here, 

the probability of heads)
 Given little evidence, we should skew towards our prior
 Given a lot of evidence, we should listen to the data



Estimation: Smoothing
 Relative frequencies are the maximum likelihood estimates

????

 In Bayesian statistics, we think of the parameters as just 
another random variable, with its own distribution



Estimation: Laplace Smoothing

 Laplace’s estimate:
 Pretend you saw every outcome once 

more than you actually did H H T

 Can derive this as a MAP estimate with Dirichlet 
priors (Bayesian justfication)



Estimation: Laplace Smoothing

 Laplace’s estimate (extended):
 Pretend you saw every outcome 

k extra times

 What’s Laplace with k = 0?
 k is the strength of the prior

H H T

 Laplace for conditionals:
 Smooth each condition 

independently:



Estimation: Linear Interpolation 

 In practice, Laplace often performs poorly for P(X|Y):
 When |X| is very large
 When |Y| is very large

 Another option: linear interpolation
 Also get P(X) from the data
 Make sure the estimate of P(X|Y) isn’t too different from P(X)

 What if α is 0?  1? How do we set α?



Real NB: Smoothing

 For real classification problems, smoothing is critical
 New odds ratios:

helvetica : 11.4
seems     : 10.8
group     : 10.2
ago       :  8.4
areas     :  8.3
...

verdana : 28.8
Credit  : 28.4
ORDER   : 27.2
<FONT>  : 26.9
money   : 26.5
...

Do these make more sense?



Tuning on Held-Out Data

 Now we’ve got two kinds of unknowns
 Parameters: the probabilities P(Y|X), P(Y)
 Hyperparameters, like the amount of 

smoothing to do: k, α

 Where to learn?
 Learn parameters from training data
 Must tune hyperparameters on different 

data
 Why?

 For each value of the hyperparameters, 
train and test on the held-out data

 Choose the best value and do a final test 
on the test data



Baselines

 First step: get a baseline
 Baselines are very simple “straw man” procedures
 Help determine how hard the task is
 Help know what a “good” accuracy is

 Weak baseline: most frequent label classifier
 Gives all test instances whatever label was most common in the 

training set
 E.g. for spam filtering, might label everything as ham
 Accuracy might be very high if the problem is skewed
 E.g. calling everything “ham” gets 66%, so a classifier that gets 

70% isn’t very good…

 For real research, usually use previous work as a 
(strong) baseline



Confidences from a Classifier
 The confidence of a probabilistic classifier:

 Posterior over the top label

 Represents how sure the classifier is of the 
classification

 Any probabilistic model will have 
confidences

 No guarantee confidence is correct

 Calibration
 Weak calibration: higher confidences mean 

higher accuracy
 Strong calibration: confidence predicts 

accuracy rate
 What’s the value of calibration?



Precision vs. Recall
 Let’s say we want to classify web pages as
 homepages or not

 In a test set of 1K pages, there are 3 homepages
 Our classifier says they are all non-homepages
 99.7 accuracy!
 Need new measures for rare positive events

 Precision: fraction of guessed positives which were actually positive

 Recall: fraction of actual positives which were guessed as positive

 Say we detect 5 spam emails, of which 2 were actually spam, and we 
missed one
 Precision: 2 correct / 5 guessed = 0.4
 Recall: 2 correct / 3 true = 0.67

 Which is more important in spam filtering?

-

guessed +

actual +



Precision vs. Recall

 Precision/recall tradeoff
 Often, you can trade off 

precision and recall
 Only works well with 

calibrated classifiers

 To summarize the tradeoff:
 Break-even point: precision 

value when p = r
 F-measure: harmonic mean of 

p and r:



Errors, and What to Do

 Examples of errors

Dear GlobalSCAPE Customer, 

GlobalSCAPE has partnered with ScanSoft to offer you the 
latest version of OmniPage Pro, for just $99.99* - the 
regular list price is $499! The most common question we've 
received about this offer is - Is this genuine? We would like 
to assure you that this offer is authorized by ScanSoft, is 
genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, 
click through to

  http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are 
there. We hope you enjoyed receiving this message. However, 
if you'd rather not receive future e-mails announcing new 
store launches, please click . . .



What to Do About Errors?

 Need more features– words aren’t enough!
 Have you emailed the sender before?
 Have 1K other people just gotten the same email?
 Is the sending information consistent? 
 Is the email in ALL CAPS?
 Do inline URLs point where they say they point?
 Does the email address you by (your) name?

 Can add these information sources as new variables in 
the NB model

 Next class we’ll talk about classifiers which let you easily 
add arbitrary features more easily



Summary

 Bayes rule lets us do diagnostic queries with causal 
probabilities

 The naïve Bayes assumption takes all features to be 
independent given the class label

 We can build classifiers out of a naïve Bayes model 
using training data

 Smoothing estimates is important in real systems

 Classifier confidences are useful, when you can get 
them



Feature Extractors
 Features: anything you can compute about the input
 A feature extractor maps inputs to feature vectors

 Many classifiers take feature vectors as inputs
 Feature vectors can be very sparse, use sparse 

encodings (i.e. only represent non-zero keys)

Dear Sir.

First, I must 
solicit your 
confidence in 
this 
transaction, 
this is by 
virture of its 
nature as being 
utterly 
confidencial and 
top secret. …

W=dear     :  1
W=sir      :  1
W=this     :  2
...
W=wish     :  0
...
MISSPELLED :  2
YOUR_NAME  :  1
ALL_CAPS   :  0
NUM_URLS   :  0
...



Generative vs. Discriminative

 Generative classifiers:
 E.g. naïve Bayes
 A joint probability model with evidence variables
 Query model for causes given evidence

 Discriminative classifiers:
 No generative model, no Bayes rule, often no 

probabilities at all!
 Try to predict the label Y directly from X
 Robust, accurate with varied features
 Loosely: mistake driven rather than model driven



Some (Simplified) Biology
 Very loose inspiration: human neurons



Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Example: Spam
 Imagine 4 features (spam is “positive” class):

 free (number of occurrences of “free”)
 money (occurrences of “money”)
 BIAS (intercept, always has value 1)

BIAS  : -3
free  :  4
money :  2
...

BIAS  :  1 
free  :  1
money :  1
...

“free money”



Binary Decision Rule
 In the space of feature vectors

 Examples are points
 Any weight vector is a hyperplane
 One side corresponds to Y=+1
 Other corresponds to Y=-1

BIAS  : -3
free  :  4
money :  2
...

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Binary Perceptron Update
 Start with zero weights
 For each training instance:

 Classify with current weights

 If correct (i.e., y=y*), no change!
 If wrong: adjust the weight vector 

by adding or subtracting the 
feature vector. Subtract if y* is -1.



Multiclass Decision Rule

 If we have more than 
two classes:
 Have a weight vector for 

each class:
 Calculate an activation for 

each class

 Highest activation wins



Example

BIAS  :
win   :  
game  :  
vote  :  
the   :   
...

BIAS  :  
win   :  
game  :  
vote  :  
the   :   
...

BIAS  :  
win   :  
game  :  
vote  :  
the   :   
...

“win the vote”

“win the election”

“win the game”



Example

BIAS  : -2
win   :  4
game  :  4
vote  :  0
the   :  0 
...

BIAS  :  1
win   :  2
game  :  0
vote  :  4
the   :  0 
...

BIAS  :  2
win   :  0
game  :  2
vote  :  0
the   :  0 
...

“win the vote”
BIAS  :  1
win   :  1
game  :  0
vote  :  1
the   :  1
...



The Perceptron Update Rule

 Start with zero weights
 Iterate training examples

 Classify with current weights

 If correct, no change!
 If wrong: lower score of wrong 

answer, raise score of right answer



Examples: Perceptron

 Separable Case



Examples: Perceptron

 Non-Separable Case



Mistake-Driven Classification

 For Naïve Bayes:
 Parameters from data statistics
 Parameters: probabilistic interpretation
 Training: one pass through the data

 For the perceptron:
 Parameters from reactions to mistakes
 Parameters: discriminative 

interpretation
 Training: go through the data until held-

out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data



Properties of Perceptrons

 Separability: some parameters get 
the training set perfectly correct

 Convergence: if the training is 
separable, perceptron will 
eventually converge (binary case)

 Mistake Bound: the maximum 
number of mistakes (binary case) 
related to the margin or degree of 
separability

Separable

Non-Separable



Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron
 Idea: adjust the weight update to 

mitigate these effects

 MIRA*: choose an update size that 
fixes the current mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not τ=0, or would not 
have made an error, so min 
will be where equality holds



Maximum Step Size
 In practice, it’s also bad to make updates that 

are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible 

value of τ with some constant C

 Corresponds to an optimization that 
assumes non-separable data

 Usually converges faster than perceptron
 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 



Support Vector Machines
 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable 
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at 

once MIRA

SVM



Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate



Extension: Web Search

 Information retrieval:
 Given information needs, 

produce information
 Includes, e.g. web search, 

question answering, and 
classic IR

 Web search: not exactly 
classification, but rather 
ranking

x = “Apple Computers”



Feature-Based Ranking

x = “Apple Computers”

x,

x,



Perceptron for Ranking

 Inputs    
 Candidates
 Many feature vectors: 
 One weight vector:

 Prediction:

 Update (if wrong):



Pacman Apprenticeship!
 Examples are states s

 Candidates are pairs (s,a)
 “Correct” actions: those taken by expert
 Features defined over (s,a) pairs: f(s,a)
 Score of a q-state (s,a) given by:

 How is this VERY different from reinforcement learning?

“correct” 
action a*


