CSE 573: Artificial Intelligence Autumn 2010

Lecture 14: Smoothing and the Perceptron 12/2/2010

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein.

Announcements

- Syllabus revised
 - Machine learning focus
- We will do mini-project status reports during last class
 - I will email instructions this weekend

Outline

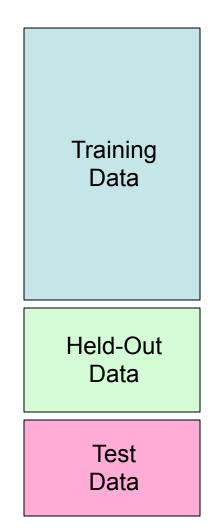
- Learning: Naive Bayes and Perceptron
 - (Recap) Naive Bayes models
 - Parameter Estimation
 - Smoothing
 - Perceptron (binary and multi-class)
 - MIRA
 - SVMs
 - Linear Ranking Models

(Recap) Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

(Recap) Important Concepts

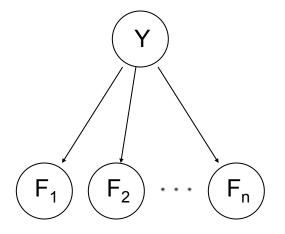
- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Very important: never "peek" at the test set!
- Evaluation
 - Compute accuracy of test set
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on *test* data
 - Overfitting: fitting the training data very closely, but not generalizing well



General Naïve Bayes

• A general *naive Bayes* model:

$$P(\mathsf{Y},\mathsf{F}_1\ldots\mathsf{F}_n) = P(\mathsf{Y})\prod_i P(\mathsf{F}_i|\mathsf{Y})$$



- We only specify how each feature depends on the class
- Total number of parameters is *linear* in n
- Use probabilistic inference to compute most likely Y

$$y = \operatorname{argmax}_y P(y|f_1 \dots f_n)$$

(Recap) General Naïve Bayes

- What do we need in order to use naïve Bayes?
 - Inference (you know this part)
 - Start with a bunch of conditionals, P(Y) and the P(F_i|Y) tables
 - Use standard inference to compute P(Y|F₁...F_n)
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - P(F_i|Y) for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data: we'll look at this now

Parameter Estimation

- Estimating distribution of random variables like X or X | Y
- Elicitation: ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating
- Empirically: use training data
 - For each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

r g g $P_{ML}(\mathbf{r}) = 1/3$

This is the estimate that maximizes the *likelihood of the data*

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

Naïve Bayes for Digits

Simple version:

- One feature F_{ii} for each grid position <i,j>
- Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

- Here: lots of features, each is binary valued
- Naïve Bayes model:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

What do we need to learn?

Naïve Bayes for Text

Bag-of-Words Naïve Bayes:

- Predict unknown class label (spam vs. ham)
- Assume evidence features (e.g. the words) are independent
- Warning: subtly different assumptions than before!
- Word at position *i*, not ith word in the dictionary!

Generative model

 $P(C, W_1 \dots W_n) = P(C) \prod_i P(W_i | C)$

- Tied distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution P(F|Y)
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs P(W|C)
 - Why make this assumption?

Example: Overfitting

P(features, C = 3)P(features, C = 2)P(C = 3) = 0.1P(C = 2) = 0.1P(on|C=2) = 0.8P(on|C=3)=0.8P(on|C=2) = 0.1- P(on|C = 3) = 0.9P(off|C = 2) = 0.1-P(off|C=3)=0.7P(on|C=2) = 0.01- P(on|C = 3) = 0.0

2 wins!!

Example: Overfitting

Posteriors determined by *relative* probabilities (odds ratios):

 $\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$

P(W spam)
P(W ham)

south-west	:	inf
nation	:	inf
morally	:	inf
nicely	:	inf
extent	:	inf
seriously	:	inf

screens : inf minute : inf guaranteed : inf \$205.00 : inf delivery : inf signature : inf

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time
 - Unlikely that every occurrence of "minute" is 100% spam
 - Unlikely that every occurrence of "seriously" is 100% ham
 - What about all the words that don't occur in the training set at all?
 - In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Wouldn't *generalize* at all
 - Just making the bag-of-words assumption gives us some generalization, but isn't enough
- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it's heads, what's the estimate for P (heads)?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

Basic idea:

- We have some prior expectation about parameters (here, the probability of heads)
- Given little evidence, we should skew towards our prior
- Given a lot of evidence, we should listen to the data

Estimation: Smoothing

Relative frequencies are the maximum likelihood estimates

$$\theta_{ML} = \arg\max_{\theta} P(\mathbf{X}|\theta)$$

= $\arg\max_{\theta} \prod_{i} P_{\theta}(X_{i})$ $P_{\mathsf{ML}}(x) = \frac{\operatorname{count}(x)}{\operatorname{total samples}}$

 In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{X})$$

$$= \arg \max_{\theta} P(\mathbf{X} | \theta) P(\theta) / P(\mathbf{X}) \qquad ????$$

$$= \arg \max_{\theta} P(\mathbf{X} | \theta) P(\theta)$$

Estimation: Laplace Smoothing

Laplace's estimate:

 Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]} \qquad P_{ML}(X) =$$
$$= \frac{c(x) + 1}{N + |X|} \qquad P_{LAP}(X) =$$

 Can derive this as a MAP estimate with *Dirichlet* priors (Bayesian justfication)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
 - Smooth each condition independently:

$$P_{LAP,0}(X) =$$

$$P_{LAP,1}(X) =$$

$$P_{LAP,100}(X) =$$

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Also get P(X) from the data
 - Make sure the estimate of P(X|Y) isn't too different from P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

What if α is 0? 1? How do we set α?

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

 $\frac{P(W|\mathsf{ham})}{P(W|\mathsf{spam})}$

 $\frac{P(W|\text{spam})}{P(W|\text{ham})}$

helvetica	:	11.4
seems	:	10.8
group	:	10.2
ago	:	8.4
areas	:	8.3
•••		

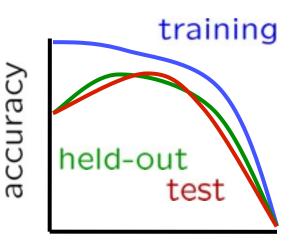
verdana	:	28.8
Credit	:	28.4
ORDER	:	27.2
	:	26.9
money	:	26.5
• • •		

Do these make more sense?

Tuning on Held-Out Data

Now we've got two kinds of unknowns

- Parameters: the probabilities P(Y|X), P(Y)
- Hyperparameters, like the amount of smoothing to do: k, $\boldsymbol{\alpha}$
- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data



 α

Baselines

First step: get a baseline

- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

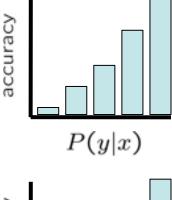
- The confidence of a probabilistic classifier:
 - Posterior over the top label

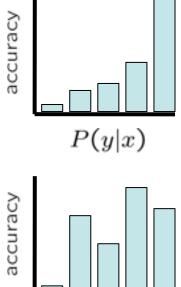
 $\operatorname{confidence}(x) = \max_{y} P(y|x)$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

Calibration

- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What's the value of calibration?

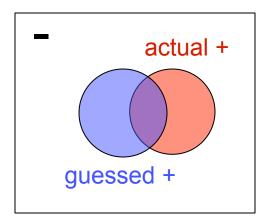




P(y|x)

Precision vs. Recall

- Let's say we want to classify web pages as homepages or not
 - In a test set of 1K pages, there are 3 homepages
 - Our classifier says they are all non-homepages
 - 99.7 accuracy!
 - Need new measures for rare positive events



- Precision: fraction of guessed positives which were actually positive
- Recall: fraction of actual positives which were guessed as positive
- Say we detect 5 spam emails, of which 2 were actually spam, and we missed one
 - Precision: 2 correct / 5 guessed = 0.4
 - Recall: 2 correct / 3 true = 0.67
- Which is more important in spam filtering?

Precision vs. Recall

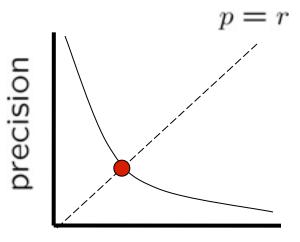
Precision/recall tradeoff

- Often, you can trade off precision and recall
- Only works well with calibrated classifiers

• To summarize the tradeoff:

- Break-even point: precision value when p = r
- F-measure: harmonic mean of p and r:

$$F_1 = \frac{2}{1/p + 1/r}$$



recall

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

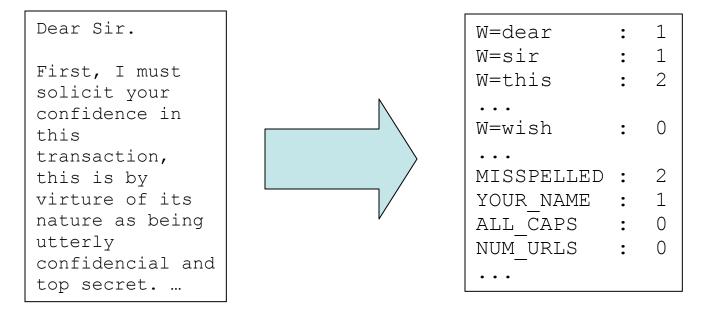
- Need more features— words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Feature Extractors

- Features: anything you can compute about the input
- A feature extractor maps inputs to feature vectors



- Many classifiers take feature vectors as inputs
- Feature vectors can be very sparse, use sparse encodings (i.e. only represent non-zero keys)

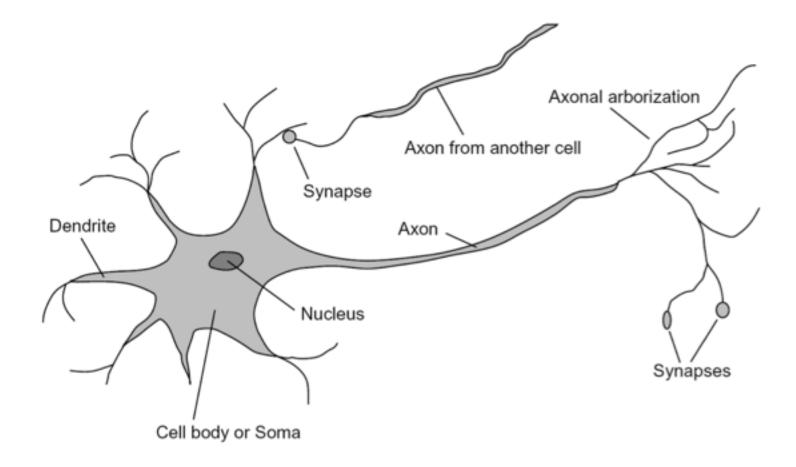
Generative vs. Discriminative

Generative classifiers:

- E.g. naïve Bayes
- A joint probability model with evidence variables
- Query model for causes given evidence
- Discriminative classifiers:
 - No generative model, no Bayes rule, often no probabilities at all!
 - Try to predict the label Y directly from X
 - Robust, accurate with varied features
 - Loosely: mistake driven rather than model driven

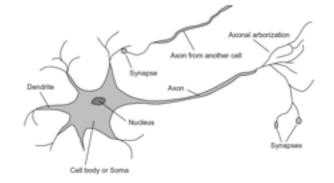
Some (Simplified) Biology

Very loose inspiration: human neurons



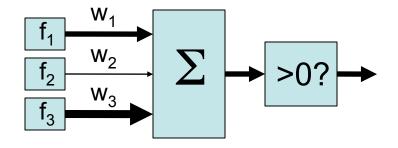
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



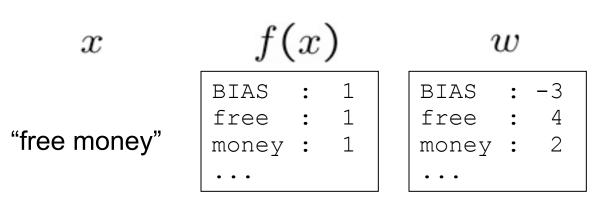
activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1



Example: Spam

- Imagine 4 features (spam is "positive" class):
 - free (number of occurrences of "free")
 - money (occurrences of "money")
 - BIAS (intercept, always has value 1)



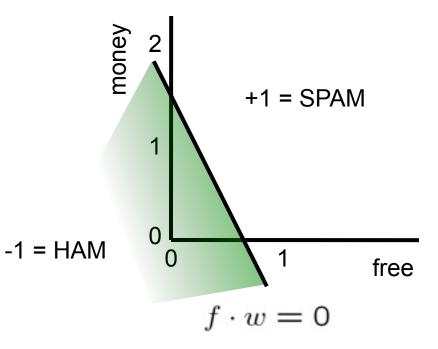
 $\sum_{i} w_{i} \cdot f_{i}(x)$ (1)(-3) +
(1)(4) +
(1)(2) +
...
= 3

 $w \cdot f(x)$

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

BIAS	:	-3
free	:	4
money	:	2
• • •		



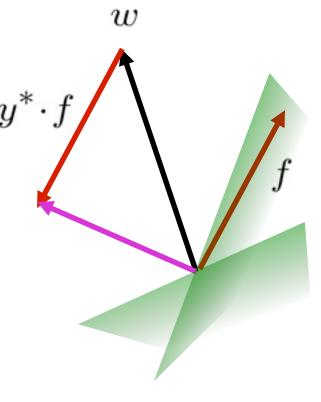
Binary Perceptron Update

- Start with zero weights
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$



Multiclass Decision Rule

- If we have more than two classes:
 - Have a weight vector for each class: wy
 - Calculate an activation for each class



$$\operatorname{activation}_w(x,y) = w_y \cdot f(x)$$

Highest activation wins

$$y = \arg \max_{y} (\arctan(x, y))$$

Example

"win the vote" "win the election" "win the game"

 w_{SPORTS}

 $w_{POLITICS}$

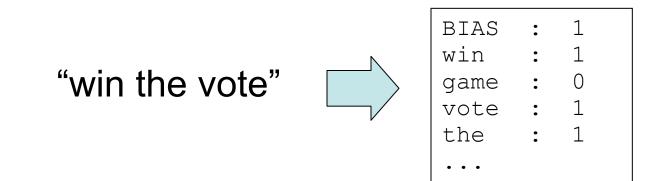
 w_{TECH}

:
•
:
:
:

BIAS	•	
win	:	
game	:	
vote	:	
the	:	
• • •		

BIAS	•	
win	:	
game	:	
vote	•	
the	:	
• • •		

Example



 w_{SPORTS}

 $w_{POLITICS}$

 w_{TECH}

BIAS	:	-2	
win	:	4	
game	:	4	
vote	:	0	
the	:	0	
•••			

BIAS	:	1	
win	:	2	
game	:	0	
vote	:	4	
the	:	0	
•••			

BIAS	:	2	
win	:	0	
game	:	2	
vote	:	0	
the	:	0	
•••			

The Perceptron Update Rule

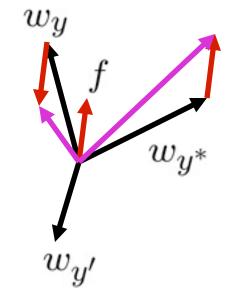
- Start with zero weights
- Iterate training examples
 - Classify with current weights

$$y = \arg \max_y w_y \cdot f(x)$$

$$= \arg \max_y \sum_i w_{y,i} \cdot f_i(x)$$

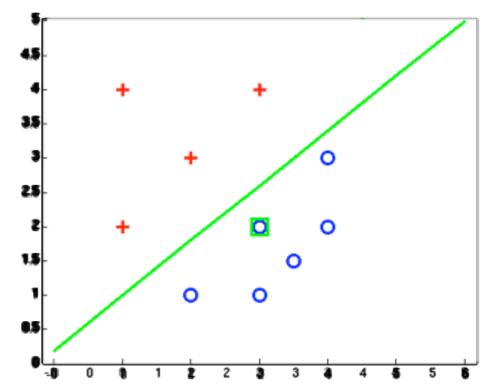
- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



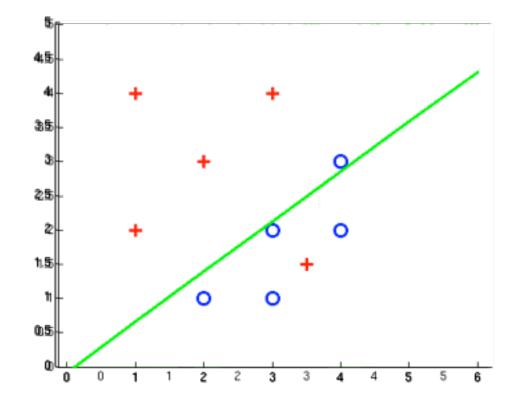
Examples: Perceptron

Separable Case



Examples: Perceptron

Non-Separable Case



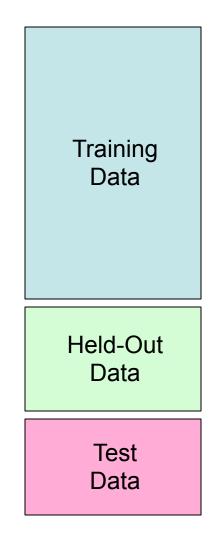
Mistake-Driven Classification

For Naïve Bayes:

- Parameters from data statistics
- Parameters: probabilistic interpretation
- Training: one pass through the data

For the perceptron:

- Parameters from reactions to mistakes
- Parameters: discriminative interpretation
- Training: go through the data until heldout accuracy maxes out

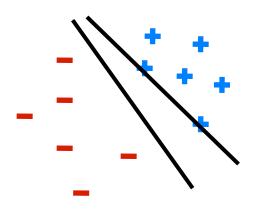


Properties of Perceptrons

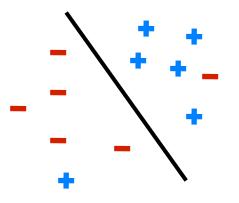
- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the *margin* or degree of separability

mistakes
$$< \frac{k}{\delta^2}$$

Separable



Non-Separable

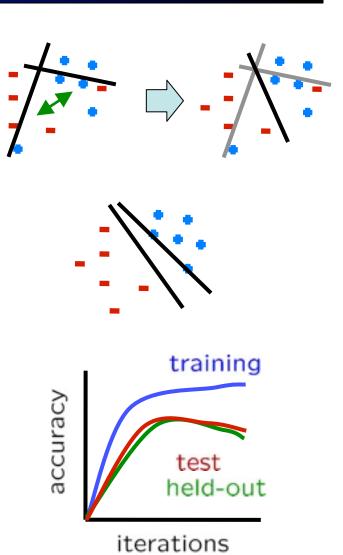


Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting



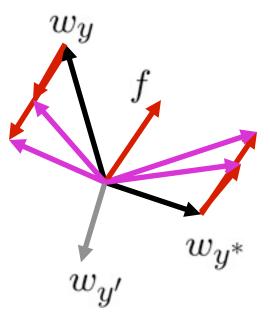
Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w

$$\min_{w} \frac{1}{2} \sum_{y} ||w_y - w'_y||^2$$

 $w_{y^*} \cdot f(x) \ge w_y \cdot f(x) + 1$

- The +1 helps to generalize
 - * Margin Infused Relaxed Algorithm

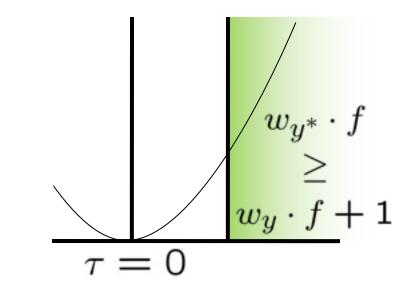


Guessed y instead of y^* on example x with features f(x)

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$

Minimum Correcting Update

$$w_y = w'_y - \tau f(x)$$
$$w_{y^*} = w'_{y^*} + \tau f(x)$$



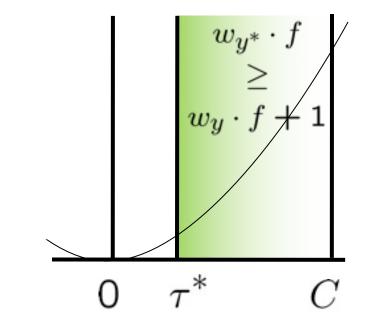
min not τ =0, or would not have made an error, so min will be where equality holds

Maximum Step Size

- In practice, it's also bad to make updates that are too large
 - Example may be labeled incorrectly
 - You may not have enough features
 - Solution: cap the maximum possible value of τ with some constant C

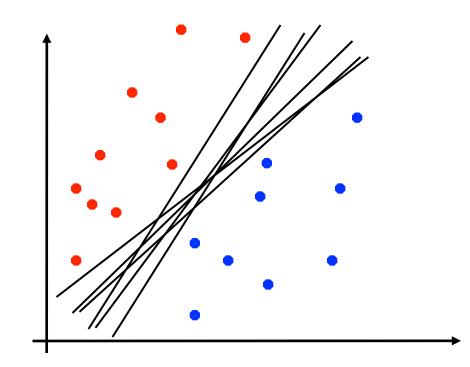
$$\tau^* = \min\left(\frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f}, C\right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data



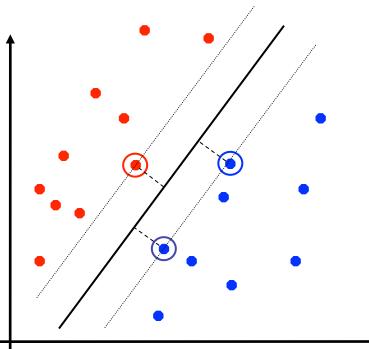
Linear Separators

Which of these linear separators is optimal?



Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with max margin
- Basically, SVMs are MIRA where you optimize over all examples at once



MIRA

$$\min_{w} \frac{1}{2} ||w - w'||^2$$
$$w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

SVM

$$\min_{w} \frac{1}{2} ||w||^2$$

$$\forall i, y \ w_{y^*} \cdot f(x_i) \ge w_y \cdot f(x_i) + 1$$

Classification: Comparison

Naïve Bayes

- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons / MIRA:

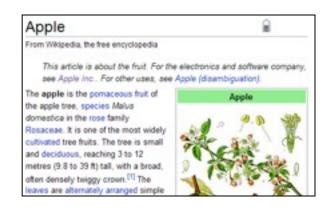
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

Extension: Web Search

Information retrieval:

- Given information needs, produce information
- Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

$$x =$$
 "Apple Computers"



Feature-Based Ranking

x = "Apple Computers"

Apple

f(*x*,

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company, see Apple Inc., For other uses, see Apple (disambiguation).

The apple is the pomaceous fluit of the apple tree, species Malus domestics in the rose family Rosaceae. It is one of the most widely cutivated tree fruits. The tree is small and deciduous, reaching 3 to 12 metres (9.8 to 39 ft) tall, with a broad, often densely twiggy crown.^[1] The leaves are alternately arranged simple

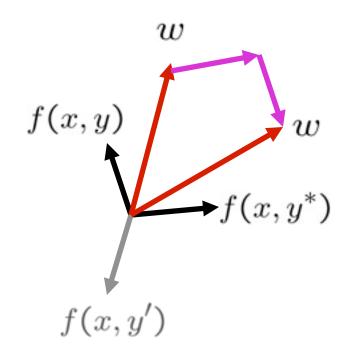
) = [0.3500...]

 $) = [0.8 4 2 1 \ldots]$

Perceptron for Ranking

- Inputs x
- Candidates y
- Many feature vectors: f(x, y)
- One weight vector: w
 - Prediction:
 - $y = \arg \max_y w \cdot f(x, y)$
 - Update (if wrong):

$$w = w + f(x, y^*) - f(x, y)$$

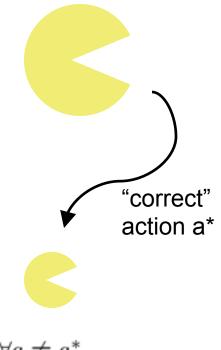


Pacman Apprenticeship!

Examples are states s

- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: f(s,a)
- Score of a q-state (s,a) given by:

$$w \cdot f(s, a)$$



 $\forall a \neq a^*, \\ w \cdot f(a^*) > w \cdot f(a)$