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Announcements
 Syllabus revised

Machine learning focus
 We will do mini-project status reports 

during last class, on Thursday
 Instructions were emailed and are on 

web page



Outline
 Learning: Naive Bayes and Perceptron

 (Recap) Perceptron
 MIRA
 SVMs
 Linear Ranking Models
 Nearest neighbor
 Kernels
 Clustering



Generative vs. Discriminative

 Generative classifiers:
 E.g. naïve Bayes
 A joint probability model with evidence variables
 Query model for causes given evidence

 Discriminative classifiers:
 No generative model, no Bayes rule, often no 

probabilities at all!
 Try to predict the label Y directly from X
 Robust, accurate with varied features
 Loosely: mistake driven rather than model driven



(Recap) Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Multiclass Decision Rule

 If we have more than 
two classes:
 Have a weight vector for 

each class:
 Calculate an activation for 

each class

 Highest activation wins



The Multi-class Perceptron Alg.

 Start with zero weights
 Iterate training examples

 Classify with current weights

 If correct, no change!
 If wrong: lower score of wrong 

answer, raise score of right answer



Examples: Perceptron
 Separable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html


Examples: Perceptron
 Inseparable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html


Mistake-Driven Classification

 For Naïve Bayes:
 Parameters from data statistics
 Parameters: probabilistic interpretation
 Training: one pass through the data

 For the perceptron:
 Parameters from reactions to mistakes
 Parameters: discriminative 

interpretation
 Training: go through the data until held-

out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data



Properties of Perceptrons

 Separability: some parameters get 
the training set perfectly correct

 Convergence: if the training is 
separable, perceptron will 
eventually converge (binary case)

 Mistake Bound: the maximum 
number of mistakes (binary case) 
related to the margin or degree of 
separability

Separable

Non-Separable



Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron
 Idea: adjust the weight update to 

mitigate these effects

 MIRA*: choose an update size that 
fixes the current mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not τ=0, or would not 
have made an error, so min 
will be where equality holds



Maximum Step Size
 In practice, it’s also bad to make updates that 

are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible 

value of τ with some constant C

 Corresponds to an optimization that 
assumes non-separable data

 Usually converges faster than perceptron
 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 



Support Vector Machines
 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable 
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at 

once MIRA

SVM



Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate



Extension: Web Search

 Information retrieval:
 Given information needs, 

produce information
 Includes, e.g. web search, 

question answering, and 
classic IR

 Web search: not exactly 
classification, but rather 
ranking

x = “Apple Computers”



Feature-Based Ranking

x = “Apple Computers”

x,

x,



Perceptron for Ranking

 Inputs    
 Candidates
 Many feature vectors: 
 One weight vector:

 Prediction:

 Update (if wrong):



Pacman Apprenticeship!
 Examples are states s

 Candidates are pairs (s,a)
 “Correct” actions: those taken by expert
 Features defined over (s,a) pairs: f(s,a)
 Score of a q-state (s,a) given by:

 How is this VERY different from reinforcement learning?

“correct” 
action a*



Case-Based Reasoning
 Similarity for classification

 Case-based reasoning
 Predict an instance’s label using 

similar instances

 Nearest-neighbor classification
 1-NN: copy the label of the most 

similar data point
 K-NN: let the k nearest neighbors 

vote (have to devise a weighting 
scheme)

 Key issue: how to define similarity
 Trade-off:

 Small k gives relevant neighbors
 Large k gives smoother functions
 Sound familiar?



Parametric / Non-parametric
 Parametric models:

 Fixed set of parameters
 More data means better settings

 Non-parametric models:
 Complexity of the classifier increases with data
 Better in the limit, often worse in the non-limit Truth

10 Examples 100 Examples 10000 Examples

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

2 Examples

 (K)NN is non-parametric

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html


Nearest-Neighbor Classification
 Nearest neighbor for digits:

 Take new image
 Compare to all training images
 Assign based on closest example

 Encoding: image is vector of intensities:

 What’s the similarity function?
 Dot product of two images vectors?

 Usually normalize vectors so ||x|| = 1
 min = 0 (when?), max = 1 (when?)



Basic Similarity

 Many similarities based on feature dot products:

 If features are just the pixels:

 Note: not all similarities are of this form



Invariant Metrics

This and next few slides adapted from Xiao Hu, UIUC

 Better distances use knowledge about vision
 Invariant metrics:

 Similarities are invariant under certain transformations
 Rotation, scaling, translation, stroke-thickness…
 E.g: 

 16 x 16 = 256 pixels; a point in 256-dim space
 Small similarity in R256 (why?)

 How to incorporate invariance into similarities?



Template Deformation

 Deformable templates:
 An “ideal” version of each category
 Best-fit to image using min variance
 Cost for high distortion of template
 Cost for image points being far from distorted template

 Used in many commercial digit recognizers

Examples from [Hastie 94]



A Tale of Two Approaches…

 Nearest neighbor-like approaches
 Can use fancy similarity functions
 Don’t actually get to do explicit learning

 Perceptron-like approaches
 Explicit training to reduce empirical error
 Can’t use fancy similarity, only linear
 Or can they?  Let’s find out!



Perceptron Weights
 What is the final value of a weight wy of a perceptron?

 Can it be any real vector?

 No!  It’s built by adding up inputs.

 Can reconstruct weight vectors (the primal representation) 
from update counts (the dual representation)



Dual Perceptron
 How to classify a new example x?

 If someone tells us the value of K for each pair of 
examples, never need to build the weight vectors!



Dual Perceptron

 Start with zero counts (alpha)
 Pick up training instances one by one
 Try to classify xn,

 If correct, no change!
 If wrong: lower count of wrong class (for this instance), 

raise score of right class (for this instance)



Kernelized Perceptron

 If we had a black box (kernel) which told us the dot 
product of two examples x and y:
 Could work entirely with the dual representation
 No need to ever take dot products (“kernel trick”)

 Like nearest neighbor – work with black-box similarities
 Downside: slow if many examples get nonzero alpha



Kernels: Who Cares?

 So far: a very strange way of doing a very simple 
calculation

 “Kernel trick”: we can substitute any* similarity 
function in place of the dot product

 Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain 
technical requirements, lots of proofs break.  
E.g. convergence, mistake bounds.  In practice, 
illegal kernels sometimes work (but not always).



Non-Linear Separators

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

 Data that is linearly separable (with some noise) works out great:



Non-Linear Separators

 General idea: the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x → φ(x)
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Why Kernels?

 Can’t you just add these features on your own (e.g. add 
all pairs of features instead of using the quadratic 
kernel)?
 Yes, in principle, just compute them
 No need to modify any algorithms
 But, number of features can get large (or infinite)
 Some kernels not as usefully thought of in their expanded 

representation, e.g. RBF or data-defined kernels [Henderson 
and Titov 05]

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much less 

space and time per dot product
 Of course, there’s the cost for using the pure dual algorithms: 

you need to compute the similarity to every training datum



Recap: Classification

 Classification systems:
 Supervised learning
 Make a prediction given 

evidence
 We’ve seen several 

methods for this
 Useful when you have 

labeled data



Clustering

 Clustering systems:
 Unsupervised learning
 Detect patterns in 

unlabeled data
 E.g. group emails or 

search results
 E.g. find categories of 

customers
 E.g. detect anomalous 

program executions
 Useful when don’t know 

what you’re looking for
 Requires data, but no 

labels
 Often get gibberish



Clustering

 Basic idea: group together similar instances
 Example: 2D point patterns

 What could “similar” mean?
 One option: small (squared) Euclidean distance



K-Means

 An iterative clustering 
algorithm
 Pick K random points 

as cluster centers 
(means)

 Alternate:
 Assign data instances 

to closest mean
 Assign each mean to 

the average of its 
assigned points

 Stop when no points’ 
assignments change



K-Means Example



K-Means as Optimization

 Consider the total distance to the means:

 Each iteration reduces phi

 Two stages each iteration:
 Update assignments: fix means c,
        change assignments a
 Update means: fix assignments a,
        change means c

points
assignments

means



Initialization

 K-means is non-deterministic
 Requires initial means
 It does matter what you pick!

 What can go wrong?

 Various schemes for preventing 
this kind of thing: variance-
based split / merge, initialization 
heuristics



K-Means Getting Stuck

 A local optimum:

Why doesn’t this work out like 
the earlier example, with the 
purple taking over half the blue?



K-Means Questions

 Will K-means converge?
 To a global optimum?

 Will it always find the true patterns in the data?
 If the patterns are very very clear?

 Will it find something interesting?

 Do people ever use it?

 How many clusters to pick?

 



Agglomerative Clustering

 Agglomerative clustering:
 First merge very similar instances
 Incrementally build larger clusters out 

of smaller clusters

 Algorithm:
 Maintain a set of clusters
 Initially, each instance in its own 

cluster
 Repeat:

 Pick the two closest clusters
 Merge them into a new cluster
 Stop when there’s only one cluster left

 Produces not one clustering, but a family 
of clusterings represented by a 
dendrogram



Agglomerative Clustering

 How should we define 
“closest” for clusters with 
multiple elements?

 Many options
 Closest pair (single-link 

clustering)
 Farthest pair (complete-link 

clustering)
 Average of all pairs
 Ward’s method (min variance, 

like k-means)

 Different choices create 
different clustering behaviors



Clustering Application
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Top-level categories:  
supervised classification

Story groupings:
unsupervised clustering


