CSE 573: Artificial Intelligence
Autumn 2010

Lecture 7: MDPs/RL
10/21/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

Outline

= Markov decision processes
» Review Optimality / Value lteration
» Value lteration convergence / complexity
* Policy lteration

= Reinforcement Learning
» Passive Learning
» TD Updates
= Q-learning
= 3:30: Tom Mitchell's Distinguished Lecture
* EEB-105

Homework Rant

» PS2 Due Tuesday!
= PS1 will be handed back this afternoon

= Admissibility was hard, but overall everyone
did well!

= Next time: Follow the instructions!!!

» Only hand in the one/two requested files
(and don't zip/tar them)

» Don’t change any other files
* Turn off your debug printouts

» Comment your code (if you want partial
credit)

Recap: MDPs

= Markov decision processes:

= States S

= Actions A

= Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount v)
Start state s,

= Quantities:
» Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state
» QQ-Values = expected future utility from a g-state

Recap: Optimal Utilities

= The utility of a state s:
V(s) = expected utility

sisa
starting in s and acting state
optimally
- (s,a)is a
= The utility of a g-state (s,a): g-state
Q’(s,a) = expected utility N
starting in s, taking (s,as)isa
action a and thereafter transition

acting optimally

= The optimal policy:

m (s) = optimal action from
state s

Recap: Bellman Equations

= Definition of utility leads to a simple
one-step lookahead relationship
amongst optimal utility values:

Total optimal rewards = maximize over
choice of (first action plus optimal future)

= Formally:
Vi(s) = max Q%(s,a)

Ets.a)= Z T(s,a,s’) [1?(5 a,s) + '7\«4*'*(.5')}

F 2t OF R S rm / a / o P * /
V*(s) = m(;ax;[(s,a,s) [R(._s,a,, s') + v V*(s)}

Practice: Computing Actions

= \Which action should we chose from state s:
= Given optimal values V?

arg max Z T(s,a,s)[R(s,a,s’)+~vV*(s)]
L /

= Given optimal g-values Q?

argmax Q™ (s, a)
a

» |_esson: actions are easier to select from Q’s!

Value Estimates

= Calculate estimates V, (s)

= Not the optimal value of s!

= The optimal value
considering only next k
time steps (k rewards)

= As k — o, it approaches
the optimal value

= Value lIteration: dynamic
programming

Example: Value lteration

VALUES AFTER O ITERATIONS

Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z T(s,a,s’) {I{(s, a,s’) +~ \,(s’)}

Throw out old vector V.

Repeat until convergence
This is called a value update or Bellman update

= Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Convergence

= Define the max-norm: ||U|| = maxs |U(s)]

= Theorem: For any two value vectors U and V
|\ 2ig dert i |8 4| el |

= |.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:
[Tt — Ul <&, = U - U] < 2e7/(1 =)

= |.e. once the change in our approximation is small, it must also
be close to correct

Value lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each Iteration
= Computation: O(|A|-|S|?)
= Space: O(|S|)

= Num of iterations
= Can be exponential in the discount factor y

Asynchronous Value lIteration™

In value iteration, we update every state in each iteration

Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

In fact, we can update the policy as seldom or often as
we like, and we will still converge

|ldea: Update states whose value we expect to change:
If 1Via($)=V:(8)| is large then update predecessors of s

Utilities for Fixed Policies

= Another basic operation:
compute the utility of a state s
under a fix (general non-optimal)

policy
= Define the utility of a state s,
under a fixed policy m:

V7(s) = expected total discounted

rewards (return) starting in s and
following

= Recursive relation (one-step
look-ahead / Bellman equation):

V™(s) =) T(s,m(s),s)[R(s,m(s),s") +yV7(s)]

Policy Evaluation

= How do we calculate the V's for a fixed policy?

» |dea one: modify Bellman updates
‘/OW(S) =1
V&1(8) « > _T(s,m(s),s)[R(s,n(s),s") + vV ()]

» |dea two: it's just a linear system, solve with
Matlab (or whatever)

Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A|
times longer than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges

Policy lteration

= Policy evaluation: with fixed current policy =, find values

with simplified Bellman updates:
= [terate until values converge

;m (9) Z'I’(.S',mr(s),sl) [R(S:T*'A:(S)vsl) 4 Viﬂ(sl)}

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Tr41(s) = arg max 3 Tlaba) [R(.s, a,s) + A,"\.-'*"”A-(s/)}

s’

Policy lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each lteration
= Computation: O(|S|® + |A|-[S|?)
= Space: O(|S|)

= Num of iterations
= Unknown, but can be faster in practice
= Convergence is guaranteed

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

» Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

What is it doing?

(- Step Delay: 0.10000 [+ (- Epsilon: 0.500 3

' Discount: 0.800 _+) MBI G SRATRE AL S5 -

Reinforcement Learning

= Reinforcement learning:

= Still have an MDP:

= Asetof statess €S \,/"\
= A set of actions (per state) A \//,’\ /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Example: Animal Learning

= RL studied experimentally for more than 60
years in psychology

» Rewards: food, pain, hunger, drugs, etc.
» Mechanisms and sophistication debated

= Example: foraging
» Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

= Bees have a direct neural connection from nectar
Intake measurement to motor planning area

Example: Backgammon

Reward only for win / loss in

terminal states, zero
otherwise

TD-Gammon learns a function
approximation to V(s) using a

neural network

Combined with depth 3
search, one of the top 3

players in the world

You could imagine training

Pacman this way...

... butit’s tricky! (It's also P3)

I A

o 1 U ()

{ 1 1 1

24 23 22 21 20 19

181716 1514 13

Passive Learning

= Simplified task

* You don’t know the transitions T(s,a,s’)
You don’t know the rewards R(s,a,s’) 1
You are given a policy mi(s)
Goal: learn the state values (and maybe the model)
|.e., policy evaluation

= |n this case:
= |Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon
» This is NOT offline planning!

E

E

Detour: Sampling Expectations

= Want to compute an expectation weighted by P(x):
Blif(z)]= D ()l

» Model-based: estimate P(x) from samples, compute expectation

i Plz)

: Elf(z)] =), P () f(x)
P(x) =count(z)/k [f(z)] =).,

= Model-free: estimate expectation directly from samples

z; ~ P(x) Elf(z)] = % 2o; f(=:)

= Why does this work”? Because samples appear with the right
frequencies!

Example: Direct Estimation

= Episodes:

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(4,3) exit +100
(

done)

1,1) up -1
1,2) up -1
1,3) right -1
2,3) right -1
3,3) right -1
3,2) up -1
4,2) exit -100

done)

(
(
(
(
(
(
(
(

y

+100\

-100

V(1,1) ~ (92 + -108) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

Model-Based Learning

= |dea:
» | earn the model empirically (rather than values)
= Solve the MDP as if the learned model were correct
= Better than direct estimation?

= Empirical model learning

= Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.qg.
“stationary noise”)

Example: Model-Based Learning

y
= Episodes: 3| = | = | = +1oo\
1,1) up -1 1,1) up -1 | |
o o 2 |} b []-100
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1 , f PFH "
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 1 2 3 4
(3,3) right -1 (3,2) up -1 vy =1
(3,2) up -1 (4,2) exit -100
(3,3) right -1 (done) T(<3,3>, right, <4,3>)=1/3
(4,3) exit +100 |
T(<2,3>, right, <3,3>)=2/2
(done)

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look-
ahead using current V

» Unfortunately, need T and R

Vo (s) =0

/+1(5) ZT(S w(s), s)[R(s w(s), s) ‘1W(“/>]

Sample Avg to Replace Expectation?

Vi1 (s) — 3 T(s,m(s), 8 R(s, m(s), s') + yV{(s)]

= Who needs T and R? Approximate the °
expectation with samples (drawn from T!) (s)
s, 7(S)

sample; = R(s,m(s),s1) + Vi (s1)
S(l,.')-)-z,pleQ o R(b ’/T(.S), 5’2) _|_ Al""‘/,_',w(S/Q) A 82’ A 31’ A 33,

sampley, = R(s,7(s),s}) + vVi"(s}.)

¥ 1
Vit1(s) « T Z sample;
ar

Exponential Moving Average

= Exponential moving average
» Makes recent samples more important
Tp + (l o Q) *Tp—1 T (l o Q)E Tp—2 1+ ...
l1+(1—a)+ (1 —a)?+...

£ n

= Forgets about the past (distant past values were wrong anyway)
= Easy to compute from the running average

Tn=(1—a) Zp_1+a- -z,

* Decreasing learning rate can give converging averages

Model-Free Learning

V™(s) — Y T(s,7(s),s)[R(s,n(s),s") + V7 (s")]

= Big idea: why bother learning T? .
» Update V each time we experience a transition mi(s)
= Temporal difference learning (TD) S, 1(S)

= Policy still fixed!

= Move values toward value of whatever ,
successor occurs: running average! A s

sample = R(s,n(s),s) +~vV™(s")
VT(s) — (1 —a)V7(s) + (a)sample
VT(s) «— V™(s) + a(sample — V™ (s))

Example: TD Policy Evaluation

Vifs) = (1—a)V"(s)+a [R(s, m(s),s") + 7\/7"(3’)}

(1,1) up -1 (1,1) up -1 s | = | = | = |
(1,2) up -1 (1,2) up -1 | t (=D
(1,2) up -1 (1,3) right -1 § | Y |) |-
(1,3) right -1 (2,3) right -1

(2,3) right -1 (3,3) right -1 .

(3,3) right -1 (3,2) up -1

(3,2) up -1 (4,2) exit -100

(3,3) right -1 (done) i

(4,3) exit +100

(done) 1

Takey=1,a=0.5

Problems with TD Value Learning

= TD value leaning is model-free for
policy evaluation (passive
learning)

= However, if we want to turn our value
estimates into a policy, we're sunk:

w(s) = argmaxQ*(s,a)
(1

' s.a)= Z T(s,a,s’) {R(s, a,s’) + 'ﬂ,ﬂ'*(.s')]

» |dea: learn Q-values directly
= Makes action selection model-free too!

Active Learning

= Full reinforcement learning

* You don’t know the transitions T(s,a,s’)

You don’t know the rewards R(s,a,s’)
You can choose any actions you like

E

Goal: learn the optimal policy . | }
... what value iteration did!

E

In this case:
= |earner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the
world and find out what happens...

Detour:; Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z} T(s,a,s’) {R(s, a,s’) +~ \,(s’)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qir1(s,a) «— Z T(s,a,s’) {R(s. a,s’) +~ max Q,; (s, a")
S'/

a

Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q*(s;a) =) T(s;a, s') [R(s, a,s’) +~ max Q* (¢, (1')]

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) + ~ max Q(s',a’)
(1
» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-Learning: Fixed Policy

P
s s

.
"

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
* |f you explore enough
* |f you make the learning rate small enough
= ... but not decrease it too quickly!
» Not too sensitive to how you select actions (!)

= Neat property: off-policy learning
= |learn optimal policy without following it (some caveats)

=

EEEEREN EEENEES

Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

Q-Learning: ¢ Greedy

AN

ASPAASIAS

Exploration Functions

= \When to explore
» Random actions: explore a fixed amount
= Better idea: explore areas whose badness is not (yet) established

= Exploration function

= Takes a value estimate and a count, and returns an
optimistic utility, e.g. f(u,n) = uw + k/n (exact form not
important)

= Exploration policy 1t(s)=

mg}le-(s/.(/) VS. mz/axf((),-(.s-’.u’). N(s', a"))
#)

(

Q-Learning Final Solution

= Q-learning produces tables of g-values:

