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Outline
 Markov decision processes

 Review Optimality / Value Iteration
 Value Iteration convergence / complexity
 Policy Iteration

 Reinforcement Learning 
 Passive Learning
 TD Updates
 Q-learning

 3:30: Tom Mitchell’s Distinguished Lecture
 EEB-105



Homework Rant
 PS2 Due Tuesday!
 PS1 will be handed back this afternoon

 Admissibility was hard, but overall everyone 
did well!

 Next time: Follow the instructions!!!
Only hand in the one/two requested files 

(and don’t zip/tar them)
Don’t change any other files
 Turn off your debug printouts
Comment your code (if you want partial 

credit)



Recap: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state s0

 Quantities:
 Policy = map of states to actions
 Utility = sum of discounted rewards
 Values = expected future utility from a state
 Q-Values = expected future utility from a q-state
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s

s, a

s,a,s’
s’



Recap: Optimal Utilities

 The utility of a state s:
V*(s) = expected utility 

starting in s and acting 
optimally

 The utility of a q-state (s,a):
Q*(s,a) = expected utility 

starting in s, taking 
action a and thereafter 
acting optimally

 The optimal policy:
π*(s) = optimal action from 

state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Recap: Bellman Equations
 Definition of utility leads to a simple 

one-step lookahead relationship 
amongst optimal utility values:

 

 Total optimal rewards = maximize over 
choice of (first action plus optimal future)

 Formally:

a

s

s, a

s,a,s’
s’



Practice: Computing Actions

 Which action should we chose from state s:
 Given optimal values V?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!



Value Estimates

 Calculate estimates Vk*(s)
 Not the optimal value of s!
 The optimal value 

considering only next k 
time steps (k rewards)

 As k → ∞, it approaches 
the optimal value

 Value Iteration: dynamic 
programming



Example: Value Iteration



Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)
 Given Vi

*, calculate the values for all states for depth i+1:

 Throw out old vector Vi
*

 Repeat until convergence
 This is called a value update or Bellman update

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do



Convergence
 Define the max-norm:

 Theorem: For any two value vectors U and V

 I.e. any distinct approximations must get closer to each other, so, 
in particular, any approximation must get closer to the true U and 
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also 
be close to correct



Value Iteration Complexity

 Problem size: 
 |A| actions and |S| states

 Each Iteration
 Computation: O(|A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Can be exponential in the discount factor γ



Asynchronous Value Iteration*

 In value iteration, we update every state in each iteration

 Actually, any sequences of Bellman updates will 
converge if every state is visited infinitely often

 In fact, we can update the policy as seldom or often as 
we like, and we will still converge

 Idea: Update states whose value we expect to change:
 If                         is large then update predecessors of s



Utilities for Fixed Policies
 Another basic operation: 

compute the utility of a state s 
under a fix (general non-optimal) 
policy

 Define the utility of a state s, 
under a fixed policy π:
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π

 Recursive relation (one-step 
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’



Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: modify Bellman updates

 Idea two: it’s just a linear system, solve with 
Matlab (or whatever)



Policy Iteration

 Problem with value iteration:
 Considering all actions each iteration is slow: takes |A| 

times longer than policy evaluation
 But policy doesn’t change each iteration, time wasted

 Alternative to value iteration:
 Step 1: Policy evaluation: calculate utilities for a fixed 

policy (not optimal utilities!) until convergence (fast)
 Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not 
optimal!) utilities (slow but infrequent)

 Repeat steps until policy converges



Policy Iteration

 Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates:
 Iterate until values converge

 Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead



Policy Iteration Complexity

 Problem size: 
 |A| actions and |S| states

 Each Iteration
 Computation: O(|S|3 + |A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Unknown, but can be faster in practice
 Convergence is guaranteed 



Comparison

 In value iteration:
 Every pass (or “backup”) updates both utilities (explicitly, based 

on current utilities) and policy (possibly implicitly, based on 
current policy)

 In policy iteration:
 Several passes to update utilities with frozen policy
 Occasional passes to update policies

 Hybrid approaches (asynchronous policy iteration):
 Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often



What is it doing?



Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do
 Must actually try actions and states out to learn



Example: Animal Learning

 RL studied experimentally for more than 60 
years in psychology
 Rewards: food, pain, hunger, drugs, etc.
 Mechanisms and sophistication debated

 Example: foraging
 Bees learn near-optimal foraging plan in field of 

artificial flowers with controlled nectar supplies
 Bees have a direct neural connection from nectar 

intake measurement to motor planning area



Example: Backgammon

 Reward only for win / loss in 
terminal states, zero 
otherwise

 TD-Gammon learns a function 
approximation to V(s) using a 
neural network

 Combined with depth 3 
search, one of the top 3 
players in the world

 You could imagine training 
Pacman this way…

 … but it’s tricky!   (It’s also P3)



Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You are given a policy π(s)
 Goal: learn the state values (and maybe the model)
 I.e., policy evaluation

 In this case:
 Learner “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 We’ll get to the active case soon
 This is NOT offline planning!



Detour: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work?  Because samples appear with the right 
frequencies!



Example: Direct Estimation

 Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1 

+100

-100



Model-Based Learning

 Idea:
 Learn the model empirically (rather than values)
 Solve the MDP as if the learned model were correct
 Better than direct estimation?

 Empirical model learning
 Simplest case:

 Count outcomes for each s,a
 Normalize to give estimate of T(s,a,s’)
 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know 
that all squares have related action outcomes, e.g. 
“stationary noise”)



Example: Model-Based Learning

 Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100 

(done)



Recap: Model-Based Policy Evaluation

 Simplified Bellman updates to 
calculate V for a fixed policy:
 New V is expected one-step-look-

ahead using current V
 Unfortunately, need T and R

π(s)

s

s, π(s)

s, π(s),s’

s’



Sample Avg to Replace Expectation?

 Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) π(s)

s

s, π(s)

s1’s2’ s3’



Exponential Moving Average

 Exponential moving average 
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)
 Easy to compute from the running average 

 Decreasing learning rate can give converging averages



Model-Free Learning

 Big idea: why bother learning T?
 Update V each time we experience a transition

 Temporal difference learning (TD)
 Policy still fixed!
 Move values toward value of whatever 

successor occurs: running average!

π(s)

s

s, π(s)

s’



Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)



Problems with TD Value Learning

 However, if we want to turn our value 
estimates into a policy, we’re sunk:

 Idea: learn Q-values directly
 Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

 TD value leaning is model-free for 
policy evaluation (passive 
learning)



Active Learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policy
 … what value iteration did!

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning!  You actually take actions in the 

world and find out what happens…



Detour: Q-Value Iteration

 Value iteration: find successive approx optimal values
 Start with V0

*(s) = 0
 Given Vi

*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:



Q-Learning Update
 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:



Q-Learning: Fixed Policy



Q-Learning Properties
 Amazing result: Q-learning converges to optimal policy

 If you explore enough
 If you make the learning rate small enough
 … but not decrease it too quickly!
 Not too sensitive to how you select actions (!)

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E



Exploration / Exploitation

 Several schemes for action selection

 Problems with random actions?
 You do explore the space, but keep thrashing 

around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

 Simplest: random actions (ε greedy)
 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy



Q-Learning: ε Greedy



Exploration Functions

 Exploration function
 Takes a value estimate and a count, and returns an 

optimistic utility, e.g.                                    (exact form not 
important)

 Exploration policy π(s)=

 When to explore
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not (yet) established

vs.



Q-Learning Final Solution

 Q-learning produces tables of q-values:


