
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 7: MDPs/RL
10/21/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein,
Stuart Russell or Andrew Moore

1

Outline
 Markov decision processes

 Review Optimality / Value Iteration
 Value Iteration convergence / complexity
 Policy Iteration

 Reinforcement Learning
 Passive Learning
 TD Updates
 Q-learning

 3:30: Tom Mitchell’s Distinguished Lecture
 EEB-105

Homework Rant
 PS2 Due Tuesday!
 PS1 will be handed back this afternoon

 Admissibility was hard, but overall everyone
did well!

 Next time: Follow the instructions!!!
Only hand in the one/two requested files

(and don’t zip/tar them)
Don’t change any other files
 Turn off your debug printouts
Comment your code (if you want partial

credit)

Recap: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state s0

 Quantities:
 Policy = map of states to actions
 Utility = sum of discounted rewards
 Values = expected future utility from a state
 Q-Values = expected future utility from a q-state

a

s

s, a

s,a,s’
s’

Recap: Optimal Utilities

 The utility of a state s:
V*(s) = expected utility

starting in s and acting
optimally

 The utility of a q-state (s,a):
Q*(s,a) = expected utility

starting in s, taking
action a and thereafter
acting optimally

 The optimal policy:
π*(s) = optimal action from

state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Recap: Bellman Equations
 Definition of utility leads to a simple

one-step lookahead relationship
amongst optimal utility values:

 Total optimal rewards = maximize over
choice of (first action plus optimal future)

 Formally:

a

s

s, a

s,a,s’
s’

Practice: Computing Actions

 Which action should we chose from state s:
 Given optimal values V?

 Given optimal q-values Q?

 Lesson: actions are easier to select from Q’s!

Value Estimates

 Calculate estimates Vk*(s)
 Not the optimal value of s!
 The optimal value

considering only next k
time steps (k rewards)

 As k → ∞, it approaches
the optimal value

 Value Iteration: dynamic
programming

Example: Value Iteration

Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)
 Given Vi

*, calculate the values for all states for depth i+1:

 Throw out old vector Vi
*

 Repeat until convergence
 This is called a value update or Bellman update

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Convergence
 Define the max-norm:

 Theorem: For any two value vectors U and V

 I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also
be close to correct

Value Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Can be exponential in the discount factor γ

Asynchronous Value Iteration*

 In value iteration, we update every state in each iteration

 Actually, any sequences of Bellman updates will
converge if every state is visited infinitely often

 In fact, we can update the policy as seldom or often as
we like, and we will still converge

 Idea: Update states whose value we expect to change:
 If is large then update predecessors of s

Utilities for Fixed Policies
 Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

 Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

 Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: modify Bellman updates

 Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Policy Iteration

 Problem with value iteration:
 Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
 But policy doesn’t change each iteration, time wasted

 Alternative to value iteration:
 Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
 Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

 Repeat steps until policy converges

Policy Iteration

 Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates:
 Iterate until values converge

 Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Policy Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|S|3 + |A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Unknown, but can be faster in practice
 Convergence is guaranteed

Comparison

 In value iteration:
 Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

 In policy iteration:
 Several passes to update utilities with frozen policy
 Occasional passes to update policies

 Hybrid approaches (asynchronous policy iteration):
 Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

What is it doing?

Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do
 Must actually try actions and states out to learn

Example: Animal Learning

 RL studied experimentally for more than 60
years in psychology
 Rewards: food, pain, hunger, drugs, etc.
 Mechanisms and sophistication debated

 Example: foraging
 Bees learn near-optimal foraging plan in field of

artificial flowers with controlled nectar supplies
 Bees have a direct neural connection from nectar

intake measurement to motor planning area

Example: Backgammon

 Reward only for win / loss in
terminal states, zero
otherwise

 TD-Gammon learns a function
approximation to V(s) using a
neural network

 Combined with depth 3
search, one of the top 3
players in the world

 You could imagine training
Pacman this way…

 … but it’s tricky! (It’s also P3)

Passive Learning

 Simplified task
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You are given a policy π(s)
 Goal: learn the state values (and maybe the model)
 I.e., policy evaluation

 In this case:
 Learner “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 We’ll get to the active case soon
 This is NOT offline planning!

Detour: Sampling Expectations
 Want to compute an expectation weighted by P(x):

 Model-based: estimate P(x) from samples, compute expectation

 Model-free: estimate expectation directly from samples

 Why does this work? Because samples appear with the right
frequencies!

Example: Direct Estimation

 Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(1,1) ~ (92 + -106) / 2 = -7

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

Model-Based Learning

 Idea:
 Learn the model empirically (rather than values)
 Solve the MDP as if the learned model were correct
 Better than direct estimation?

 Empirical model learning
 Simplest case:

 Count outcomes for each s,a
 Normalize to give estimate of T(s,a,s’)
 Discover R(s,a,s’) the first time we experience (s,a,s’)

 More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

 Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Recap: Model-Based Policy Evaluation

 Simplified Bellman updates to
calculate V for a fixed policy:
 New V is expected one-step-look-

ahead using current V
 Unfortunately, need T and R

π(s)

s

s, π(s)

s, π(s),s’

s’

Sample Avg to Replace Expectation?

 Who needs T and R? Approximate the
expectation with samples (drawn from T!) π(s)

s

s, π(s)

s1’s2’ s3’

Exponential Moving Average

 Exponential moving average
 Makes recent samples more important

 Forgets about the past (distant past values were wrong anyway)
 Easy to compute from the running average

 Decreasing learning rate can give converging averages

Model-Free Learning

 Big idea: why bother learning T?
 Update V each time we experience a transition

 Temporal difference learning (TD)
 Policy still fixed!
 Move values toward value of whatever

successor occurs: running average!

π(s)

s

s, π(s)

s’

Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

Problems with TD Value Learning

 However, if we want to turn our value
estimates into a policy, we’re sunk:

 Idea: learn Q-values directly
 Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

 TD value leaning is model-free for
policy evaluation (passive
learning)

Active Learning

 Full reinforcement learning
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You can choose any actions you like
 Goal: learn the optimal policy
 … what value iteration did!

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the

world and find out what happens…

Detour: Q-Value Iteration

 Value iteration: find successive approx optimal values
 Start with V0

*(s) = 0
 Given Vi

*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:

Q-Learning Update
 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Q-Learning: Fixed Policy

Q-Learning Properties
 Amazing result: Q-learning converges to optimal policy

 If you explore enough
 If you make the learning rate small enough
 … but not decrease it too quickly!
 Not too sensitive to how you select actions (!)

 Neat property: off-policy learning
 learn optimal policy without following it (some caveats)

S E S E

Exploration / Exploitation

 Several schemes for action selection

 Problems with random actions?
 You do explore the space, but keep thrashing

around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

 Simplest: random actions (ε greedy)
 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy

Q-Learning: ε Greedy

Exploration Functions

 Exploration function
 Takes a value estimate and a count, and returns an

optimistic utility, e.g. (exact form not
important)

 Exploration policy π(s)=

 When to explore
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not (yet) established

vs.

Q-Learning Final Solution

 Q-learning produces tables of q-values:

