
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 6: MDPs
10/19/2010

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

1

Announcements

 PS2 online now
 Due in one week

 Reading
 two treatments of MDPs/RL

Outline (next few lectures)

 Markov Decision Processes (MDPs)
MDP formalism
Value Iteration
Policy Iteration

 Reinforcement Learning (RL)
Relationship to MDPs
Several learning algorithms

Review: Expectimax
 What if we don’t know what the

result of an action will be? E.g.,
 In solitaire, next card is unknown
 In minesweeper, mine locations
 In pacman, the ghosts act randomly

10 4 5 7

max

chance

 Today, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

 Can do expectimax search
 Chance nodes, like min nodes,

except the outcome is uncertain
 Calculate expected utilities
 Max nodes as in minimax

search
 Chance nodes take average

(expectation) of value of children

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must learn to act so as to maximize expected rewards

Reinforcement Learning

Videos here

Grid World
 The agent lives in a grid
 Walls block the agent’s path
 The agent’s actions do not always

go as planned:
 80% of the time, the action North

takes the agent North
(if there is no wall there)

 10% of the time, North takes the
agent West; 10% East

 If there is a wall in the direction the
agent would have been taken, the
agent stays put

 Small “living” reward each step
 Big rewards come at the end
 Goal: maximize sum of rewards

Markov Decision Processes
 An MDP is defined by:

 A set of states s ∈ S
 A set of actions a ∈ A
 A transition function T(s,a,s’)

 Prob that a from s leads to s’
 i.e., P(s’ | s,a)
 Also called the model

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state (or distribution)
 Maybe a terminal state

 MDPs: non-deterministic
search problems
 Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

What is Markov about MDPs?

 Andrey Markov (1856-1922)

 “Markov” generally means that given
the present state, the future and the
past are independent

 For Markov decision processes,
“Markov” means:

Solving MDPs

 In an MDP, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy maximizes expected utility if followed
 Defines a reflex agent

Optimal policy when R
(s, a, s’) = -0.03 for all
non-terminals s

 In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: High-Low

 Three card types: 2, 3, 4
 Infinite deck, twice as many 2’s
 Start with 3 showing
 After each card, you say “high”

or “low”
 New card is flipped
 If you’re right, you win the

points shown on the new card
 Ties are no-ops
 If you’re wrong, game ends

2

3
2

4

 Differences from expectimax problems:
 #1: get rewards as you go
 #2: you might play forever!

High-Low as an MDP
 States: 2, 3, 4, done
 Actions: High, Low
 Model: T(s, a, s’):

 P(s’=4 | 4, Low) = 1/4
 P(s’=3 | 4, Low) = 1/4
 P(s’=2 | 4, Low) = 1/2
 P(s’=done | 4, Low) = 0
 P(s’=4 | 4, High) = 1/4
 P(s’=3 | 4, High) = 0
 P(s’=2 | 4, High) = 0
 P(s’=done | 4, High) = 3/4
 …

 Rewards: R(s, a, s’):
 Number shown on s’ if s ≠ s’
 0 otherwise

2

3
2

4

Search Tree: High-Low
3

Low High

2 43
High Low High Low High Low

3 , Low , High3

T = 0.5,
R = 2

T = 0.25,
R = 3

T = 0,
R = 4

T = 0.25,
R = 0

MDP Search Trees
 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences
 In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
 Typically consider stationary preferences:

 Theorem: only two ways to define stationary utilities
 Additive utility:

 Discounted utility:

Infinite Utilities?!
 Problem: infinite state sequences have infinite rewards

 Solutions:
 Finite horizon:

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

 Discounting: for 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

Discounting

 Typically discount
rewards by γ < 1
each time step
 Sooner rewards

have higher utility
than later rewards

 Also helps the
algorithms converge

Recap: Defining MDPs

 Markov decision processes:
 States S
 Start state s0

 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)

 MDP quantities so far:
 Policy = Choice of action for each state
 Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

Optimal Utilities
 Define the value of a state s:

V*(s) = expected utility starting in s and acting
optimally

 Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action

a and thereafter acting optimally
 Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

The Bellman Equations

 Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

 Formally:

a

s

s, a

s,a,s’
s’

Why Not Search Trees?

 Why not solve with expectimax?

 Problems:
 This tree is usually infinite (why?)
 Same states appear over and over (why?)
 We would search once per state (why?)

 Idea: Value iteration
 Compute optimal values for all states all at

once using successive approximations
 Will be a bottom-up dynamic program

similar in cost to memoization
 Do all planning offline, no replanning

needed!

Value Estimates

 Calculate estimates Vk
*(s)

 The optimal value considering
only next k time steps (k rewards)

 As k → ∞, it approaches the
optimal value

 Why:
 If discounting, distant rewards

become negligible
 If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

 Otherwise, can get infinite expected
utility and then this approach
actually won’t work

Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)
 Given Vi

*, calculate the values for all states for depth i+1:

 This is called a value update or Bellman update
 Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Example: Bellman Updates

max happens for
a=right, other
actions not shown

Example: γ=0.9, living
reward=0, noise=0.2

Example: Value Iteration

 Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

Example: Value Iteration

Convergence
 Define the max-norm:

 Theorem: For any two approximations U and V

 I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also
be close to correct

Value Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Can be exponential in the discount factor γ

Practice: Computing Actions

 Which action should we chose from state s:

 Given optimal values Q?

 Given optimal values V?

 Lesson: actions are easier to select from Q’s!

Utilities for Fixed Policies
 Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

 Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

 Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: modify Bellman updates

 Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Policy Iteration

 Problem with value iteration:
 Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
 But policy doesn’t change each iteration, time wasted

 Alternative to value iteration:
 Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
 Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

 Repeat steps until policy converges

Policy Iteration

 Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates:
 Iterate until values converge

 Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Policy Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|S|3 + |A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Unknown, but can be faster in practice

Comparison

 In value iteration:
 Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

 In policy iteration:
 Several passes to update utilities with frozen policy
 Occasional passes to update policies

 Hybrid approaches (asynchronous policy iteration):
 Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

