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Outline

 Probabilistic sequence models (and inference)
 (Review) Markov Chains
 Hidden Markov Models
 Particle Filters
 Most Probable Explanations
 Dynamic Bayesian networks



Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform
 Sensor reading model: P(R | G)

 Given: we know what our sensors do
 R = reading color measured at (1,1)
 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:



Recap: Markov Models
 A Markov model is:

 a MDP with no actions (and no rewards)

X2X1 X3 X4
BRIEF ARTICLE

THE AUTHOR

P (Xt|Xt−1)
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and

 A Markov model includes:
 Random variables Xt for all time steps t (the state)
 Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

XN

 a chain-structured Bayesian Network (BN)



Recap: Markov Models

 A Markov model defines
 a joint probability distribution:

X2X1 X3 X4

 One common inference problem:
 Compute marginals P(Xt) for all time steps t 

XN
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P (X1, . . . ,Xn) = P (X1)
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Recap: Mini-Forward Algorithm

 Question: What’s P(X) on some day t?
 We don’t need to enumerate every sequence!

sun

rain

sun

rain

sun

rain

sun

rain

Forward simulation



Recap: Stationary Distributions

 If we simulate the chain long enough:
 What happens?
 Uncertainty accumulates
 Eventually, we have no idea what the state is!

 Stationary distributions:
 For most chains, the distribution we end up in is 

independent of the initial distribution
 Called the stationary distribution of the chain
 Usually, can only predict a short time out



Hidden Markov Models
 Markov chains not so useful for most agents

 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 POMDPs without actions (or rewards).  
 As a Bayes’ net:
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Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Hidden Markov Models

 Defines a joint probability distribution:

X5X2

E1
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Ghostbusters HMM
 P(X1) = uniform

 P(X’|X) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

 P(E|X) = same sensor model as before:
red means close, green means far away.
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HMM Computations
 Given 

 joint P(X1:n,E1:n) 
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)



Real HMM Examples

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of 

thousands)

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)



Filtering / Monitoring

 Filtering, or monitoring, is the task of tracking the 
distribution B(X) (the belief state) over time

 We start with B(X) in an initial setting, usually uniform

 As time passes, or we get observations, we update B(X)

 The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0
Sensor model: never more than 1 mistake

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference Recap: Simple Cases

E1

X1

X2X1



Online Belief Updates

 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

X2X1

X2

E2



Passage of Time
 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step 

t the belief is about, and what evidence it includes

X2X1



Example: Passage of Time

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise



Observation
 Assume we have current belief P(X | previous evidence):

 Then:

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence

 Unlike passage of time, we have to renormalize

E1

X1



Example: Observation

 As we get observations, beliefs get 
reweighted, uncertainty “decreases”

Before observation After observation



The Forward Algorithm

 We to know:
 We can derive the following updates

 To get            , compute each entry and normalize



Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Example HMM



Example Pac-man



Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Recap: Reasoning Over Time

 Stationary Markov models

X2X1 X3 X4

rain sun
0.7

0.7

0.3

0.3

X5X2
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X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8

 Hidden Markov models



Recap: Filtering


Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe



Particle Filtering
 Sometimes |X| is too big to use 

exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number 

of samples
 But: number needed may be large
 In memory: list of particles, not 

states

 This is how robot localization 
works in practice

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5



Representation: Particles
 Our representation of P(X) is now 

a list of N particles (samples)
 Generally, N << |X|
 Storing map from X to counts 

would defeat the point

 P(x) approximated by number of 
particles with value x
 So, many x will have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (2,1)
    (3,3)
    (3,3)
    (2,1)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its 
next position from the transition model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)



Particle Filtering: Observe

 Slightly trickier:
 We don’t sample the observation, we fix it
 We weight our samples based on the 

evidence

 Note that, as before, the weights/
probabilities don’t sum to one, since most 
have been downweighted (in fact they 
sum to an approximation of P(e))



Particle Filtering: Resample
 Rather than tracking 

weighted samples, 
we resample

 N times, we choose 
from our weighted 
sample distribution 
(i.e. draw with 
replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with 
the next one

Old Particles:
    (3,3) w=0.1
    (2,1) w=0.9
    (2,1) w=0.9  
    (3,1) w=0.4
    (3,2) w=0.3
    (2,2) w=0.4
    (1,1) w=0.4
    (3,1) w=0.4
    (2,1) w=0.9
    (3,2) w=0.3

New Particles:
    (2,1) w=1
    (2,1) w=1
    (2,1) w=1  
    (3,2) w=1
    (2,2) w=1
    (2,1) w=1
    (1,1) w=1
    (3,1) w=1
    (2,1) w=1
    (1,1) w=1



Summary: Particle Filtering
At each time step t, we have a set of N particles / samples
 Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states



Robot Localization
 In robot localization:

 We know the map, but not the robot’s position
 Observations may be vectors of range finder readings
 State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
 Particle filtering is a main technique



Robot Localization



Which Algorithm?
Exact filter, uniform initial beliefs



Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles



Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles



P4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Noisy distance prob
True distance = 8



Best Explanation Queries

 Query: most likely seq:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Viterbi Algorithm
sun

rain

sun

rain

sun

rain

sun

rain



Example



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 
multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time
 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step
 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select prior samples (tuples of values) in 
proportion to their likelihood


