CSE 573: Artificial Intelligence Autumn 2010

Lecture 11: Hidden Markov Models II 11/4/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic sequence models (and inference)
- (Review) Markov Chains
- Hidden Markov Models
- Particle Filters
- Most Probable Explanations
- Dynamic Bayesian networks

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: P(G)
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- $\mathrm{R}=$ reading color measured at $(1,1)$
- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$
- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

Recap: Markov Models

- A Markov model is:
- a MDP with no actions (and no rewards)
- a chain-structured Bayesian Network (BN)

- A Markov model includes:
- Random variables X_{t} for all time steps t (the state)
- Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

$$
P\left(X_{1}\right) \quad \text { and } \quad P\left(X_{t} \mid X_{t-1}\right)
$$

Recap: Markov Models

- A Markov model defines
- a joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right)
$$

- One common inference problem:
- Compute marginals $P\left(X_{t}\right)$ for all time steps t

Recap: Mini-Forward Algorithm

- Question: What's $P(X)$ on some day t?
- We don't need to enumerate every sequence!

Forward simulation

Recap: Stationary Distributions

- If we simulate the chain long enough:
- What happens?
- Uncertainty accumulates
- Eventually, we have no idea what the state is!
- Stationary distributions:
- For most chains, the distribution we end up in is independent of the initial distribution
- Called the stationary distribution of the chain
- Usually, can only predict a short time out

Hidden Markov Models

- Markov chains not so useful for most agents
- Eventually you don't know anything anymore
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- POMDPs without actions (or rewards).
- As a Bayes' net:

Example

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P(E \mid X)$

Hidden Markov Models

- Defines a joint probability distribution:

$$
P\left(X_{1}, \ldots, X_{n}, E_{1}, \ldots, E_{n}\right)=
$$

$$
P\left(X_{1: n}, E_{1: n}\right)=
$$

$$
P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

Ghostbusters HMM

- $P\left(X_{1}\right)=$ uniform
- $P\left(X^{\prime} \mid X\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place
- $P(E \mid X)=$ same sensor model as before: red means close, green means far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(X_{1}\right)$		

$1 / 6$	$1 / 6$	$1 / 2$
0	$1 / 6$	0
0	0	0

$P\left(X^{\prime} \mid X=<1,2>\right)$

HMM Computations

- Given
- joint $P\left(X_{1: n}, E_{1: n}\right)$
- evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: t}\right)$ for all t
- Smoothing, find $P\left(X_{t} \mid e_{1: n}\right)$ for all t
- Most probable explanation, find

$$
x_{1: n}^{*}=\operatorname{argmax}_{x_{1: n}} P\left(x_{1: n} \mid e_{1: n}\right)
$$

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B(X)$ (the belief state) over time
- We start with $B(X)$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(X)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Prob

$$
t=0
$$

Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.

Example: Robot Localization

Inference Recap: Simple Cases

$$
P\left(X_{1} \mid e_{1}\right)
$$

$$
\begin{aligned}
P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
& \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
& =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{aligned}
$$

$P\left(X_{2}\right)$

$$
\begin{aligned}
P\left(x_{2}\right) & =\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Online Belief Updates

- Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- Then, after one time step passes:

$$
P\left(X_{t+1} \mid e_{1: t}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

- Or, compactly:

$$
B^{\prime}\left(X^{\prime}\right)=\sum_{x} P\left(X^{\prime} \mid x\right) B(x)
$$

- Basic idea: beliefs get "pushed" through the transitions
- With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | 1.00 | <0.01 | <0.01 | <0.01 |
| <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| $<$ | | | | | |

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
\ll					

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
0.					

$$
\begin{array}{cc}
\mathrm{T}=1 & \mathrm{~T}=2 \\
B^{\prime}\left(X^{\prime}\right)= & \sum_{x} P\left(X^{\prime} \mid x\right) B(x)
\end{array}
$$

$$
\mathrm{T}=5
$$

Transition model: ghosts usually go clockwise

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then:

$$
P\left(X_{t+1} \mid e_{1: t+1}\right) \propto P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Or:

$$
B\left(X_{t+1}\right) \propto P(e \mid X) B^{\prime}\left(X_{t+1}\right)
$$

- Basic idea: beliefs reweighted by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01
0					

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

The Forward Algorithm

- We to know: $B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$
- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto{ }_{X} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

- To get $B_{t}(X)$, compute each entry and normalize

Example: Run the Filter

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions:
$P\left(X_{t} \mid X_{t-1}\right)$
- Emissions:
$P(E \mid X)$

Example HMM

Example Pac-man

SCORE:
0

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_{T} given e_{1} through $e_{T}: P\left(X_{T} \mid e_{1: t}\right)$
- We first compute $\mathrm{P}\left(\mathrm{X}_{1} \mid \mathrm{e}_{1}\right): \quad P\left(x_{1} \mid e_{1}\right) \propto P\left(x_{1}\right) \cdot P\left(e_{1} \mid x_{1}\right)$
- For each trom 2 to T, we have $P\left(X_{t-1} \mid e_{1: t-1}\right)$
- Elapse time: compute $P\left(X_{\mathrm{t}} \mid \mathrm{e}_{1: \mathrm{t}-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- Observe: compute $P\left(X_{t} \mid e_{1:-1-1}, e_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Recap: Reasoning Over Time

- Stationary Markov models

$$
P\left(X_{1}\right) \quad P\left(X \mid X_{-1}\right)
$$

$$
P(E \mid X)
$$

- Hidden Markov models

X	E	P
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Filtering

Elapse time: compute $P\left(X_{t} \mid e_{1: t-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

Observe: compute $P\left(X_{t} \mid e_{1: t}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

$P\left(X_{1} \mid E_{1}=\right.$ umbrella $) \quad<0.82,0.18>\quad$ Observe
$P\left(X_{2} \mid E_{1}=\right.$ umbrella $) \quad<0.63,0.37>\quad$ Elapse time
$P\left(X_{2} \mid E_{1}=u m b, E_{2}=u m b\right) \quad<0.88,0.12>\quad$ Observe

Particle Filtering

- Sometimes $|\mathrm{X}|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- $|\mathrm{X}|^{2}$ may be too big to do updates
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization
 works in practice

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x
- So, many x will have $P(x)=0$!
- So, many x will have $P(x)=0$!
- For now, all particles have a weight of 1

Particles:
$(3,3)$
$(3,2)$
$(2,1)$

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
- We don't sample the observation, we fix it
- We weight our samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- Note that, as before, the weights/ probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Old Particles:
$(3,3) w=0.1$
$(2,1) w=0.9$
$(2,1) w=0.9$
$(3,1) w=0.4$
$(3,2) w=0.3$
$(2,2) w=0.4$
$(1,1) w=0.4$
$(3,1) w=0.4$
$(2,1) w=0.9$
$(3,2) w=0.3$

New Particles:

$$
(2,1) w=1
$$

$(2,1) w=1$
$(2,1) w=1$
$(3,2) w=1$
$(2,2) w=1$
$(2,1) w=1$
$(1,1) w=1$
$(3,1) w=1$
$(2,1) w=1$
$(1,1) w=1$

Summary: Particle Filtering

At each time step t , we have a set of N particles / samples

- Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next state

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

2. Reweight: for each particle, compute its weight

$$
w(x)=P(e \mid x)
$$

3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Robot Localization

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

SCORE: 0

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

SCORE: 0

P4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Noisy distance prob
True distance = 8
15
14
13
12
11
10
9

Best Explanation Queries

- Query: most likely seq:

$$
\underset{x_{1: t}}{\arg \max } P\left(x_{1: t} \mid e_{1: t}\right)
$$

Viterbi Algorithm

$$
\begin{aligned}
x_{1: T}^{*} & =\underset{x_{1: T}}{\arg \max } P\left(x_{1: T} \mid e_{1: T}\right)=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T}, e_{1: T}\right) \\
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =\max _{x_{1: t-1}} P\left(x_{1: t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{1: t-2}} P\left(x_{1: t-1}, e_{1: t-1}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Example

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Discrete valued dynamic Bayes nets are also HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{2}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{2}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $\mathrm{P}\left(\mathrm{E}_{1}{ }^{\mathrm{a}} \mid \mathbf{G}_{1}{ }^{\mathrm{a}}\right)^{*} \mathrm{P}\left(\mathbf{E}_{1}{ }^{\mathrm{b}} \mid \mathbf{G}_{1}{ }^{\mathbf{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

