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Outline

= Probabilistic sequence models (and inference)
* (Review) Markov Chains
» Hidden Markov Models
= Particle Filters
* Most Probable Explanations
= Dynamic Bayesian networks



Ghostbusters, Revisited

= |Let’'s say we have two distributions: ot o1 B oo
= Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
» Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R = yellow | G=(1,1)) = 0.1
= \We can calculate the posterior
distribution P(G]|r) over ghost locations

given a reading using Bayes' rule:

J‘O Ol

P(g|r) o< P(r|g)P(g) -



Recap: Markov Models

= A Markov model is:
= a MDP with no actions (and no rewards)

» a chain-structured Bayesian Network (BN)

() >

= A Markov model includes:
= Random variables X, for all time steps ¢ (the state)

= Parameters: called transition probabilities or
dynamics, specify how the state evolves over time
(also, initial probs)

P(‘\r]_) and P(Xt’Xt_l)



Recap: Markov Models
(P> > (1)

= A Markov model defines
= a joint probability distribution:

N
P(Xy,...,Xn) = P(X1) | [ P(Xe| X¢—1)

= One common inference problem:
= Compute marginals P(X)) for all time steps ¢



Recap: Mini-Forward Algorithm

= Question: What’s P(X) on some day t?
* We don’t need to enumerate every sequence!
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P(z)) = Y P(atle—1)P(xi-1)

Lt—1

P(x1) = known

T

Forward simulation



Recap: Stationary Distributions

* |f we simulate the chain long enough:
» What happens?

» Uncertainty accumulates
= Eventually, we have no idea what the state is!

= Stationary distributions:

= For most chains, the distribution we end up in is
independent of the initial distribution

= Called the stationary distribution of the chain
» Usually, can only predict a short time out



Hidden Markov Models

= Markov chains not so useful for most agents
= Eventually you don’t know anything anymore
= Need observations to update your beliefs

= Hidden Markov models (HMMs)
» Underlying Markov chain over states S
* You observe outputs (effects) at each time step
= POMDPs without actions (or rewards).
= As a Bayes' net:



Example
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= An HMM is defined by:
= |nitial distribution: P(X1)

= Transitions:
= Emissions:

P(X|X;_1)
P(E|X)

Umbrella,)




Hidden Markov Models

(>
H»H 666 6
= Defines a joint probability distribution:

P(X1,..., X, E1,...,E)
P(Xlzna El:n) —

N
P(X1)P(E1|X1) | [ P(Xe| Xeo1) P(Ee|Xy)



Ghostbusters HMM

P(X,) = uniform

P(X'|X) = usually move clockwise, but
sometimes move in a random direction or
stay in place

P(E|X) = same sensor model as before:
red means close, green means far away.
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HMM Computations

= Given
" jOint P(Xl:n’Elzn)
= evidence E,., =¢,.,

= Inference problems include:

= Filtering, find P(X/|e,.,) for all

= Smoothing, find P(X |e,.,) for all ¢

» Most probable explanation, find

= argmaxx,,, P(x;.,/e;.,)

%
X l:n



Real HMM Examples

= Speech recognition HMMs:
» Observations are acoustic signals (continuous valued)

» States are specific positions in specific words (so, tens of
thousands)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

= Robot tracking:
» Observations are range readings (continuous)
» States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

We start with B(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

B 00
Prob 0 1

t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.




Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Inference Recap: Simple Cases

P(Xile1)

P(X2)

P(xyle1) = P(x1,e1)/P(eq1) P(xo) = Z P(zy,z2)
I
3(_\1 P(-’I;la(il) -

=2 _P(z1)P(z2|z1)
= P(xz1)P(e1|z1) 1



Online Belief Updates

= Every time step, we start with current P(X | evidence)

= \We update for time: @_»@

P(ztle1:s—1) = Y, P(x¢—1le1:t—1) - P(ze|zi—1)

Ti_1

= \We update for evidence:
P(ztle1:t) oxx P(xtler:t—1) - P(et|zt)




Passage of Time

= Assume we have current belief P(X | evidence to date)
B(Xt) = P(Xt|e1:t)

= Then, after one time step passes: @_'@

P(Xi41le1:r) =) P(Xyy1lze) P(xtler:t)

It

= Or, compactly:

B'(X) = Z P(X'|z)B(x)

» Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step
t the belief is about, and what evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates”

13<0.013<0.013<0.013<0.013<0.01 <0.013<0.013<0.013<0.01< . : 0.05 §<0.014<0.01}<0.

.018<0.01}<0.01 .01 .01 <0.014<0.014 0.06 $<0.01}<0.01}<0, N . 0.11 § 0.35 §<0.01}<0.

—_— R . - . -+ - i

.01} 1.00 |<0.01 1 <0.014 0.76 1 0.06 } 0.06 < : : 0.05 1<0.014 0.03 | <0,
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!

Transition model: ghosts usually go clockwise



Observation

Assume we have current belief P(X | previous evidence):

B'(Xi4+1) = P(Xyg1le1:t) @
Then: l

P(Xit1le1:t41) < P(ep41|Xe41) P(Xi41le1:e)

Or:
B(Xi4+1) < P(e|X)B'(X;41)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize



Example: Observation

r - o T ' o | ]
0.05 | 0.01 ] 0.08 ‘<o.01 <0.01]<0.01
l
] e L [
0.02 f 0.14  0.11 Jl0.35 <0 o1i<o‘01

l
0.07 } 0.03 ‘0.05 ‘(0.01‘ 0.03 l(0.0l

|

0.03 ] 0.03 L<0.01 <0.01]<0.011<0.01

Before observation

= As we get observations, beliefs get
reweighted, uncertainty "decreases”

After observation

B(X) x P(e|X)B'(X)



The Forward Algorithm

= We to know: By(X) = P(X¢le1:t)
= We can derive the following updates

P(xtle1-t) xx P(xt,e1:¢)

= Y P(x4_1,%4, e1:1)

Lt—1

= ) P(xt_1,e1:t—1)P(xt|zi—1)P(et|z:)
Ti_1

= P(et|zt) D P(xt|xi—1)P(x4—1,€1:4-1)

Lt—1

= To get B;(X), compute each entry and normalize



Example: Run the Filter

R | P(R,)

[ 0.7
/ 0.3 /\

R, | PU,)

! 0.9

/ 0.2

Umhrell(D @zbrelD Umbrella,)

= An HMM is defined by:
= |nitial distribution: P(X71)
* Transitions: P(X:|X:1)
* Emissions: P(E|X)




Example HMM

0.500 0.627
0.500 0.373
True 0.500 0.318 0.383
False 0.500 0.182 0.117




Example Pac-man




Summary: Filtering

Filtering is the inference process of finding a distribution
over X; given e, through e : P( X; | eq)

We first compute P( X, | e, ): P(z1i]e1) o< P(zy) - Pley|z1)
Foreach tfrom 2to T, we have P( X, | €4.1.1 )

Elapse time: compute P( X,| €4..1)

l)(i-l'l‘(‘l:/—l ) = Z ])(."Iff_ll(‘il:f_l) - P(thll’t—l)

Tt—1
Observe: compute P(X,| .1, €) = P( X/| €44)

P(;’ilf[,|(f31:{) X P(j'l'l‘(}l:/—l) ' P(Bt‘ll?t)



Recap: Reasoning Over Time

= Stationary Markov models

> --»

P(X1) P(X|X_-1)

0.3
0.3

£ &

= Hidden Markov models

) ()---»

P(E|X)

X E P
rain | umbrella 0.9
rain | no umbrella| 0.1
sun | umbrella 0.2
sun | no umbrella| 0.8




Recap: Filtering

Elapse time: compute P( X,| €..1)

P(x¢le1.t— Z/ 1f-1|(1/—| (11?t|217t—1)

Lt—1

Observe: compute P( X;| e,.)

P(x¢lerr) o< P(xilers—1) - Pe|xs)

Belief: <P(rain), P(sun)>

@ @ P(X,) <0.5, 0.5> Prior on X,

P(X, | F1 = umbrella) <0.82, 0.18> Observe
g @ umbrella)  <0.63,0.37>  Elapse time

P(Xo | Ey = umb. E'5 = umb) <0.88,0.12>  Observe



= Sometimes |X] is too big to use
exact inference

= Solution: approximate inference

= E.g. Xis continuous

This iIs how robot localization

Particle Filtering

|X| may be too big to even store B(X)

|X|2 may be too big to do updates

Track samples of X, not all values
Samples are called particles

Time per step is linear in the number
of samples

But: number needed may be large
In memory: list of particles, not

states

0.0 | 0.1 | 0.0

0.0 | 0.0 | 0.2

00 | 02| 05
®

oo

oo %

works in practice




Representation: Particles

Our representation of P(X) is now
a list of N particles (samples)

= Generally, N << [X]

= Storing map from X to counts
would defeat the point

P(x) approximated by number of
particles with value x

= So, many x will have P(x) = 0!
= More particles, more accuracy

For now, all particles have a
weight of 1

Particles:

(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its
next position from the transition model

2/ = sample(P(X'|z))

» This is like prior sampling — samples’
frequencies reflect the transition probs
» Here, most samples move clockwise, but

some move in another direction or stay in
place

= This captures the passage of time

» |f we have enough samples, close to the
exact values before and after (consistent)

O\




Particle Filtering: Observe

= Slightly trickier:
= We don’t sample the observation, we fix it

= \We weight our samples based on the
evidence

w(z) = P(e|x)

B(X) x P(e|X)B'(X)

= Note that, as before, the weights/
probabilities don’'t sum to one, since most
have been downweighted (in fact they
sum to an approximation of P(e))

@ @0
o.o ®©e
o

@ e o




Particle Filtering: Resample

Rather than tracking
weighted samples,
we resample

N times, we choose
from our weighted
sample distribution
(i.e. draw with
replacement)

This is equivalent to
renormalizing the
distribution

Now the update is
complete for this time
step, continue with
the next one

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1)w=0.9
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1)w=0.9
(3,2) w=0.3

New Particles:

(2,1) w=1
(2,1) w=1
(2,1) w=1
(3,2) w=1
(2,2)
(2,1)
(1,1)
(3,1)
(2,1)
(1,1)

£




Summary: Particle Filtering

At each time step t, we have a set of N particles / samples
= Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next
state

' = sample(P(X'|z))
2. Reweight: for each particle, compute its weight
w(z) = P(e|zx)

3. Resample: normalize the weights, and sample N new
particles from the resulting distribution over states



Robot Localization

* In robot localization:
We know the map, but not the robot’s position
Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

" £z




Robot Localization




Which Algorithm?

Exact filter, uniform initial beliefs




Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles




Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles




P4: Ghostbusters

Noisy distance prob

= Plot: Pacman's grandfather, Grandpac, True distance = 8
learned to hunt ghosts for sport. 15
14 |
13 |
= He was blinded by his power, but could 12 1
hear the ghosts’ banging and clanging. ié '_
9
= Transition Model: All ghosts move 3 f—
randomly, but are sometimes biased 6 mm
5 o
4 1
= Emission Model: Pacman knows a 3
“noisy” distance to each ghost i _'




Best Explanation Queries

)X ---»
&) & &) &
= Query: most likely seq:

arg max ])(;'.I'.f1:/|(.’.1:,)
L1 :¢



Viterbi Algorithm

sun /™ sun /™ Sun > Sun

> > >

rain ——» rain — rain —— rain

arg max P(xzq-ple1-7) = argmax P(xq1-p,e1:-7)
T1:7 T1-T

AL P(z1:t—1, %t €1:¢)

max P(21:-1, e1:4—1) P(@tfxs—1) P(et|xt)

P(et|zt) max P(ztfes—1) max P(z1:4-1,€1:4-1)

= P(et|zt) max P(x¢|ze—1)my—1[ze—1]



Example

Rain | Rain 5 Rain 3 Rain 4 Rain 5
state
space
paths | .

false false false false false
umbrella false

S182 S155 0361 0334 0210
most
likely < g
paths 1818 0491 1237 0173 0024

m,, m,., m,., m, ., m,.



Dynamic Bayes Nets (DBNSs)

= \We want to track multiple variables over time, using
multiple sources of evidence

» |dea: Repeat a fixed Bayes net structure at each time
= \ariables from time t can condition on those from ¢-1

t =1
G2
: G,b i,

= Discrete valued dynamic Bayes nets are also HMMs




DBN Particle Filters

A particle is a complete sample for a time step
Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2= (3,3) G, = (5,3)

Elapse time: Sample a successor for each particle

= Example successor: G,2= (2,3) G,P = (6,3)
Observe: Weight each entire sample by the likelihood of
the evidence conditioned on the sample

= Likelihood: P(E,2|G,2) * P(E,*|G,P)

Resample: Select prior samples (tuples of values) in
proportion to their likelihood



