CSE 573: Artificial Intelligence Autumn 2010

Lecture 11: Hidden Markov Models II 11/4/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

Probabilistic sequence models (and inference)

- (Review) Markov Chains
- Hidden Markov Models
- Particle Filters
- Most Probable Explanations
- Dynamic Bayesian networks

Ghostbusters, Revisited

Let's say we have two distributions:

- Prior distribution over ghost location: P(G)
 - Let's say this is uniform
- Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

 $P(g|r) \propto P(r|g)P(g)$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

Recap: Markov Models

- A Markov model is:
 - a MDP with no actions (and no rewards)
 - a chain-structured Bayesian Network (BN)

$$X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4 \rightarrow \dots \rightarrow X_N$$

- A Markov model includes:
 - Random variables X_t for all time steps t (the state)
 - Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial probs)

$$P(X_1)$$
 and $P(X_t|X_{t-1})$

Recap: Markov Models

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) \rightarrow (X_N)$$

- A Markov model defines
 - a joint probability distribution:

$$P(X_1, \dots, X_n) = P(X_1) \prod_{t=2}^N P(X_t | X_{t-1})$$

- One common inference problem:
 - Compute marginals $P(X_t)$ for all time steps t

Recap: Mini-Forward Algorithm

- Question: What's P(X) on some day t?
 - We don't need to enumerate every sequence!

$$P(x_t) = \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1})$$
$$P(x_1) = \text{known}$$

Forward simulation

Recap: Stationary Distributions

- If we simulate the chain long enough:
 - What happens?
 - Uncertainty accumulates
 - Eventually, we have no idea what the state is!

Stationary distributions:

- For most chains, the distribution we end up in is independent of the initial distribution
- Called the stationary distribution of the chain
- Usually, can only predict a short time out

Hidden Markov Models

- Markov chains not so useful for most agents
 - Eventually you don't know anything anymore
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states S
 - You observe outputs (effects) at each time step
 - POMDPs without actions (or rewards).
 - As a Bayes' net:

Example

 $P(X_t|X_{t-1})$

P(E|X)

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions:
 - Emissions:

Hidden Markov Models

Defines a joint probability distribution:

$$P(X_1, \dots, X_n, E_1, \dots, E_n) =$$

$$P(X_{1:n}, E_{1:n}) =$$

$$P(X_1)P(E_1|X_1) \prod_{t=2}^{N} P(X_t|X_{t-1})P(E_t|X_t)$$

Ghostbusters HMM

- $P(X_1) = uniform$
- P(X'|X) = usually move clockwise, but sometimes move in a random direction or stay in place
- P(E|X) = same sensor model as before: red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

1/6	1/6	1/2
0	1/6	0
0	0	0

P(X'|X=<1,2>)

HMM Computations

Given

- joint $P(X_{1:n}, E_{1:n})$
- evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for all t
 - Smoothing, find $P(X_t|e_{1:n})$ for all t
 - Most probable explanation, find

$$x^{*}_{1:n} = \operatorname{argmax}_{x_{1:n}} P(x_{1:n}|e_{1:n})$$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) over time
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example from Michael Pfeiffer

Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.

Inference Recap: Simple Cases

$$\begin{array}{ccc}
X_{1} \\
F_{1} \\
F_{1} \\
P(X_{1}|e_{1}) \\
P(X_{1}|e_{1}) \\
P(X_{1}|e_{1}) \\
P(X_{2}) \\
P(x_{2}) \\
P(x_{1}|e_{1}) = P(x_{1},e_{1})/P(e_{1}) \\
\propto_{X_{1}} P(x_{1},e_{1}) \\
= P(x_{1})P(e_{1}|x_{1}) \\
P(x_{2}) = \sum_{x_{1}} P(x_{1},x_{2}) \\
P(x_{2}|x_{1}) \\
= \sum_{x_{1}} P(x_{1},P(x_{2}|x_{1})) \\
P(x_{2}|x_{1}) \\
P(x_{2}|x_{1})$$

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence: $P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

Passage of Time

- Assume we have current belief P(X | evidence to date) $B(X_t) = P(X_t | e_{1:t})$
- Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

• Or, compactly:

$$B'(X') = \sum_{x} P(X'|x) B(x)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0276	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0135	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

T = 1

$$T = 5$$

$$B'(X') = \sum_{x} P(X'|x) B(x)$$

Transition model: ghosts usually go clockwise

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

Then:

 $P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

• Or: $B(X_{t+1}) \propto P(e|X)B'(X_{t+1})$

- Basic idea: beliefs reweighted by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

The Forward Algorithm

- We to know: $B_t(X) = P(X_t|e_{1:t})$
- We can derive the following updates

 $P(x_t|e_{1:t}) \propto_X P(x_t, e_{1:t})$

$$=\sum_{x_{t-1}} P(x_{t-1}, x_t, e_{1:t})$$

 $= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_t | x_{t-1}) P(e_t | x_t)$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

• To get $B_t(X)$, compute each entry and normalize

Example: Run the Filter

- An HMM is defined by:
 - Initial distribution: $P(X_1)$
 - Transitions:
 - Emissions:

 $P(X_t|X_{t-1})$ P(E|X)

Example HMM

Example Pac-man

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_T given e₁ through e_T : P(X_T | e_{1:t})
- We first compute P(X₁ | e_1): $P(x_1|e_1) \propto P(x_1) \cdot P(e_1|x_1)$
- For each t from 2 to T, we have P($X_{t-1} | e_{1:t-1}$)
- Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• Observe: compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$ $P(x_t | e_{1:t}) \propto P(x_t | e_{1:t-1}) \cdot P(e_t | x_t)$

Recap: Reasoning Over Time

Stationary Markov models

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4) - - - \rightarrow$$

 $P(X_1) \qquad P(X|X_{-1})$

Х	E	Ρ
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Recap: Filtering

Elapse time: compute $P(X_t | e_{1:t-1})$

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t | e_{1:t}$)

 $P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

Particle Filtering

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x will have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles: (3,3) (2,3) (3,3) (3,2) (3,3) (3,2) (2,1) (3,3) (3,3) (2,1)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

Slightly trickier:

- We don't sample the observation, we fix it
- We weight our samples based on the evidence

w(x) = P(e|x)

 $B(X) \propto P(e|X)B'(X)$

 Note that, as before, the weights/ probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Old Particles: (3,3) w=0.1 (2,1) w=0.9 (2,1) w=0.9 (3,1) w=0.4 (3,2) w=0.3 (2,2) w=0.4 (1,1) w=0.4 (3,1) w=0.4 (2,1) w=0.9 (3,2) w=0.3

New Particles: (2,1) w=1 (2,1) w=1 (2,1) w=1 (3,2) w=1 (2,2) w=1 (2,1) w=1 (1,1) w=1 (2,1) w=1 (2,1) w=1 (1,1) w=1

Summary: Particle Filtering

At each time step t, we have a set of N particles / samples

- Three step procedure, to move to time t+1:
 - 1. Sample transitions: for each each particle x, sample next state

 $x' = \operatorname{sample}(P(X'|x))$

- 2. Reweight: for each particle, compute its weight w(x) = P(e|x)
- 3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Robot Localization

Which Algorithm?

Exact filter, uniform initial beliefs

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

P4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Best Explanation Queries

• Query: most likely seq: $\arg \max_{x_{1:t}} P(x_{1:t}|e_{1:t})$

Viterbi Algorithm

 $\begin{aligned} x_{1:T}^* &= \arg\max_{x_{1:T}} P(x_{1:T}|e_{1:T}) = \arg\max_{x_{1:T}} P(x_{1:T}, e_{1:T}) \\ m_t[x_t] &= \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \\ &= \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \end{aligned}$

Example

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Discrete valued dynamic Bayes nets are also HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood